Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 4 | 101-105

Article title

Hydrodechlorination of tetrachloromethane over silica-supported palladium-gold alloys

Content

Title variants

Languages of publication

EN

Abstracts

EN
Compared with the monometallic palladium, bimetallic Pd-Au/SiO2 catalysts show much higher activity and better stability in the reaction of hydrodechlorination of tetrachloromethane, also providing higher selectivity to longer than methane hydrocarbon products. Reasonably mixed Pd-Au particles show better catalytic performance during ~60 h operation, whereas the monometallic palladium and very rich in palladium catalysts suffer rapid deactivation. Smaller amounts of carbon- and chlorine-containing deposits found after reaction on Pd-Au catalysts correspond to their superior catalytic behavior.

Publisher

Year

Volume

16

Issue

4

Pages

101-105

Physical description

Dates

published
1 - 12 - 2014
online
11 - 12 - 2014

Contributors

  • Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
  • Cardinal Stefan Wyszyński University in Warsaw, Faculty of Mathematics and Natural Sciences-School of Science, ul. Wóycickiego 1/3, PL-01938 Warszawa, Poland
  • Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland
  • Institute of Physical Chemistry of the Polish Academy of Sciences, ul. Kasprzaka 44/52, PL-01224 Warszawa, Poland

References

  • 1. Kovalchuk, V.I. & d’Itri, J.L. (2004). Catalytic chemistry of chloro- and chlorofl uorocarbon dehalogenation: from macroscopic observations to molecular level understanding. Appl. Catal. A 271, 13-25. DOI: 10.1016/j.apcata.2004.02.042.[Crossref]
  • 2. Keane, M.A. (2011). Supported transition metal catalysts for hydrodechlorination reactions. ChemCatChem 3, 800-821. DOI: 10.1002/cctc.201000432.[Crossref]
  • 3. Zhang, Z.C. & Beard, B.C. (1998). Genesis of durable catalyst for selective hydrodechlorination of CCl4 to CHCl3. Appl. Catal. A 174, 33-39. http://dx.doi.org/10.1016/S0926-860X(98)00150-1[Crossref]
  • 4. Holbrook, M.T. & Myers, J.D. (2007). U.S Patent No. 2007/0225530 A1. Washington, D.C.: U.S. Patent and Trademark Office.
  • 5. Bonarowska, M., Kaszkur, Z., Kępiński, L. & Karpiński, Z. (2010). Hydrodechlorination of tetrachloromethane on alumina- and silica-supported platinum catalysts. Appl. Catal. B 99, 248-256. DOI: 10.1016/j.apcatb.2010.06.027.[Crossref]
  • 6. Lokteva, E.S., Lunin, V.V., Golubina, E.V., Simagina, V.I., Egorova, M. & Stoyanova, I.V. (2000). C-C bond formation during hydrodechlorination of CCl4 on Pd-containing catalysts. Stud. Surf. Sci. Catal. 130, 1997-2002.
  • 7. Dal Santo, V., Dossi, C., Recchia, S., Colavita, P.E., Vlaic, G. & Psaro, R. (2002). Carbon tetrachloride hydrodechlorination with organometallics-based platinum and palladium catalysts on MgO. J. Mol. Catal. A 182-183, 157-166. http:// dx.doi.org/10.1016/S1381-1169(01)00458-7[Crossref]
  • 8. Szczepaniak, B., Góralski, J., Grams, J. & Paryjczak, T. (2006). Studies on the activity of Pd/TiO2 catalysts in the hydrodechlorination of CCl4. Przem. Chem. 85, 764-765.
  • 9. Prati, L. & Rossi, M. (1999). Reductive catalytic dehalogenation of light chlorocarbons. Appl. Catal. B 23, 135-142. http://dx.doi.org/10.1016/S0926-3373(99)00071-5[Crossref]
  • 10. Grams, J., Góralski, J. & Kwintal, P. (2010). ToFSIMS studies of the regeneration of Pd/TiO2 catalyst used in hydrodechlorination process. Int. J. Mass Spectr. 292, 1-6. DOI: 10.1016/j.ijms.2010.02.006.[WoS][Crossref]
  • 11. Wong, M.S., Alvarez, P.J.J., Fang, Y.L., Akçin, N., Nutt, M.O., Miller, J.T. & Heck, K.N. (2009). Cleaner water using bimetallic nanoparticle catalysts. J. Chem. Technol. Biotechnol. 84, 158-166. DOI: 10.1002/jctb.2002.[Crossref]
  • 12. Heck, K.N., Nutt, M.O., Alvarez, P. & Wong, M.S. (2009). Deactivation resistance of Pd/Au nanoparticle catalysts for water-phase hydrodechlorination. J. Catal. 267, 97-104. DOI: 10.1016/j.jcat.2009.07.015.[Crossref][WoS]
  • 13. Pretzer, L.A., Song, H.J., Fang, Y.-L., Zhao, Z., Guo, N., Wuc, T., Arslan, I., Miller, J.T. & Wong, M.S. (2013). Hydrodechlorination catalysis of Pd-on-Au nanoparticles varies with particle size. J. Catal. 298, 206-217. http://dx.doi.org/10.1016/j.jcat.2012.11.005[Crossref]
  • 14. Meshesha, T.B., Barrabés, N., Llorca, J., Dafinov, A., Medina, F. & Föttinger, K. (2013). PdCu alloy nanoparticles on alumina as selective catalysts for trichloroethylene hydrodechlorination to ethylene. Appl. Catal. A 453, 130-141. DOI: 10.1016/j.apcata.2012.12.019.[WoS][Crossref]
  • 15. Bonarowska, M., Pielaszek, J., Juszczyk, W. & Karpiński, Z. (2000). Characterization of Pd-Au/SiO2 catalysts by X-Ray Diffraction, Temperature-Programmed Hydride Decomposition and catalytic probes, J. Catal. 195, 304-314. DOI: 10.1006/jcat.2000.2989.[Crossref]
  • 16. Legawiec-Jarzyna, M. Śrębowata, A.; Juszczyk, W. & Karpiński, Z. (2004). Hydrodechlorination over Pd-Pt/Al2O3 catalysts - A comparative study of chlorine removal from dichlorodifl uoromethane, carbon tetrachloride and 1,2-dichloroethane. Appl. Catal. A 271 (1-2), 61-68. DOI: 10.1016/j. apcata.2004.01.036.[Crossref]
  • 17. Legawiec-Jarzyna, M., Juszczyk, W., Bonarowska, M., Kaszkur, Z., Kępiński, L., Kowalczyk, Z. & Karpiński, Z. (2009). Hydrodechlorination of CCl4 on Pt-Au/Al2O3 catalysts. Top. Catal. 52, 1037-1043. DOI: 10.1007/s11244-009-9258-5.[Crossref]
  • 18. Ichikawa, S., Poppa, H. & Boudart, M. (1985). Disproportionation of CO on small particles of silica-supported palladium. J. Catal. 91, 1-10. http://dx.doi.org/10.1016/0021-9517(85)90282-9[Crossref]
  • 19. Sárkány, A., Horváth, A. & Beck, A. (2002). Hydrogenation of acetylene over low loaded Pd and Pd-Au/SiO2 catalysts. Appl. Catal. A 229, 117-125.
  • 20. Bonarowska, M. & Karpiński, Z. (2008). Application of the β-PdH decomposition for characterization of supported palladium catalysts. Pol. J. Chem. 82, 1973-1980.
  • 21. Ziemecki, S.B., Michel, J.B. & Jones, G.A. (1986). Hydride formation as a measure of alloying in bimetallic systems containing palladium. React. Solids 2, 187-202. http://dx.doi.org/10.1016/0168-7336(86)80082-1[Crossref]
  • 22. Gao, F. & Goodman, D.W. (2012). Pd-Au bimetallic catalysts: understanding alloy effects from planar models and (supported) nanoparticles. Chem. Soc. Rev. 41, 8009-8020. DOI: 10.1039/c2cs35160a.[Crossref]
  • 23. Bonarowska, M., Machynskyy, O., Łomot, D., Kemnitz, E. & Karpiński, Z. (2014). Supported palladium-copper catalysts. Preparation and catalytic behavior in hydrogen-related reactions. Catal. Today, corrected proofs on-line: http://dx.doi.org/10.1016/j.cattod.2014.01.029[Crossref]
  • 24. Śrębowata, A., Lisowski, W., Sobczak, J.W. & Karpiński, Z. (2011). Hydrogen assisted dechlorination of 1,2dichloroethane on active carbon supported palladium-copper catalysts. Catal. Today 175, 576-584. DOI:10.1016/j.cattod.2011.03.038. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0077
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.