PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 4 | 66-74
Article title

Time requirements in closed and open batch distillation arrangements for separation of a binary mixture

Content
Title variants
Languages of publication
EN
Abstracts
EN
Batch time requirements are provided for the separation of binary zeotropic mixtures in two different multivessel columns (with and without vapor bypass), a non-cyclic two-vessel column and a regular batch column based on dynamic simulations. The first three columns are operated as closed (total reflux) systems and the regular batch column is operated as an open (partial reflux) system. We analyze the effects of feed composition, relative volatility and product specification on the time requirements. The multivessel arrangements perform better than the regular batch column, which requires from 4.00 to 34.67% more time to complete a given separation. The elimination of the vapor bypass in the multivessel column is impractical though it has a positive effect on the batch time requirements. Thus, the multivessel column, with the vapor stream bypassing the intermediate vessel, is proposed as the best candidate for a binary zeotropic mixture with low concentration of light component, low relative volatility and high product purity demand. Furthermore, an experimental multivessel column with vapor bypass is built and the corresponding experiments verify the simulations.
Publisher

Year
Volume
16
Issue
4
Pages
66-74
Physical description
Dates
published
1 - 12 - 2014
online
11 - 12 - 2014
Contributors
author
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, P.R. China, shuozhao@tju.edu.cn
  • Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
author
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, P.R. China
  • Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
author
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, P.R. China
  • Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
author
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, P.R. China
  • Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
author
  • Tianjin University, School of Chemical Engineering and Technology, Tianjin 300072, P.R. China
  • Tianjin University, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, P.R. China
References
  • 1. Sørensen, E. & Skogestad, S. (1996). Comparison of regular and inverted batch distillation, Chem. Eng. Sci. 51(22), 4949-4962. DOI: 10.1016/0009-2509(96)00287-4.[Crossref]
  • 2. Klein, A. & Repke, J.U. (2009). Regular and inverted batch process structures for pressure swing distillation: a case study, Asia-Pac. J. Chem. Eng. 4(6), 893-904. DOI: 10.1002/apj.344.[Crossref][WoS]
  • 3. Masoud, A.Z. & Mujtaba, I.M. (2009). Effect of operating decisions on the design and energy consumption of inverted batch distillation column, Chem. Prod. Proc. Model., 4(1), Article 35. DOI: 10.2202/1934-2659.1275.[Crossref]
  • 4. Davidyan, A.G., Kiva, V.N., Meski, G.A. & Morari, M. (1994). Batch distillation in a column with a middle vessel, Chem. Eng. Sci. 49(18), 3033-3051. DOI: 10.1016/0009-2509(94) E0083-3.[Crossref]
  • 5. Meski, G.A. & Morari, M. (1995). Design and operation of a batch distillation column with a middle vessel, Comput. Chem. Eng. 19, 597-602. DOI: 10.1016/0098-1354(95)87100-4.[Crossref]
  • 6. Barolo, M., Guarise, G.B., Rienzi, S.A., Trotta, A. & Macchietto, S. (1996). Running batch distillation in a column with a middle vessel, Ind. Eng. Chem. Res. 35(12), 4612-4618. DOI: 10.1021/ie960268s.[Crossref]
  • 7. Cui, X.B., Yang, Z.C., Shao, H.Q. & Qu, H.M. (2001). Batch distillation in a column with a cold middle vessel for heat-sensitive compounds, Ind. Eng. Chem. Res. 40(3), 879-884. DOI: 10.1021/ie000491w.[Crossref]
  • 8. Warter, M., Demicoli, D. & Stichlmair, J. (2004). Operation of a batch distillation column with a middle vessel: experimental results for the separation of zeotropic and azeotropic mixtures, Chem. Eng. Process. 43(3), 263-272. DOI: 10.1016/ S0255-2701(03)00122-3.[Crossref]
  • 9. Gruetzmann, S., Fieg, G. & Kapala, T. (2006). Theoretical analysis and operating behaviour of a middle vessel batch distillation with cyclic operation, Chem. Eng. Process. 45(1), 46-54. DOI: 10.1016/j.cep.2005.05.005.[Crossref]
  • 10. Gruetzmann, S. & Fieg, G. (2008). Startup operation of middle-vessel batch distillation column: modeling and simulation, Ind. Eng. Chem. Res. 47(3), 813-824. DOI: 10.1021/ ie070667v.[Crossref][WoS]
  • 11. Babu, G., Aditya, R. & Jana, A.K. (2012). Economic feasibility of a novel energy efficient middle vessel batch distillation to reduce energy use, Energy 45(1), 626-633. DOI: 10.1016/j.energy.2012.07.035.[WoS][Crossref]
  • 12. Edreder, E.A., Mujtaba, I.M. & Emtir, M.M. (2012). Simulation of middle vessel batch reactive distillation column: application to hydrolysis of methyl lactate, Chem. Eng. Trans. 29, 595-600. DOI: 10.3303/CET1229100.[Crossref]
  • 13. Monroy-Loperena, R. & Alvarez-Ramí rez, J. (2012). Dual composition control in continuous, middle-vessel distillation columns, with a draw stream in the middle vessel, Ind. Eng. Chem. Res. 51(12), 4624-4631. DOI: 10.1021/ie203018k.[Crossref][WoS]
  • 14. Mori, H., Ito, C., Oda, A. & Aragaki, T. (1999). Total refl ux simulation of packed column distillation, J. Chem. Eng. Jpn. 32(1), 69-75. DOI: 10.1252/jcej.32.69.[Crossref]
  • 15. Hegely, L. & Lang, P. (2011). Comparison of closed and open operation modes of batch distillation, Chem. Eng. Trans. 25, 695-700. DOI: 10.3303/CET1125116.[Crossref]
  • 16. Skouras, S. & Skogestad, S. (2004). Time requirements for heteroazeotropic distillation in batch columns, Comput. Chem. Eng. 28(9), 1689-1700. DOI: 10.1016/j.compchemeng. 2004.01.004.[Crossref]
  • 17. Skouras, S. & Skogestad, S. (2004). Time (energy) requirements in closed batch distillation arrangements, Comput. Chem. Eng. 28(5), 829-837. DOI: 10.1016/j.compchemeng.2004.02.021.[Crossref]
  • 18. Bai, P., Hua, C., Li, X. & Yu, K.T. (2005). Cyclic total refl ux batch distillation with two refl ux drums, Chem. Eng. Sci. 60(21), 5845-5851. DOI: 10.1016/j.ces.2005.05.040.[Crossref]
  • 19. Bai, P., Song, S., Sheng, M. & Li, X. (2010). A dynamic modeling for cyclic total refl ux batch distillation, Chinese. J. Chem. Eng. 18(4), 554-561. DOI: 10.1016/S1004-9541(10)60258-3.[Crossref]
  • 20. Jiang, Z. & Bai, P. (2011). Overhead concentration platform of total withdrawal operation in cyclic total refl ux batch distillation, Chinese. J. Chem. Eng. 19(4), 598-602. DOI: 10.1016/S1004-9541(11)60028-1.[Crossref]
  • 21. Bortolini, P. & Guarise, G.B. (1970). A new practice of batch distillation, Quad. dell’Ing. Chim. Ital., 6(9), 150-157.
  • 22. Treybal, R.E. (1970). A simple method for batch distillation, Chem. Eng. 77, 95-101.
  • 23. Wittgens, B., Litto, R., Sørensen, E. & Skogestad, S. (1996). Total refl ux operation of multivessel batch distillation, Comput. Chem. Eng. 20, 1041-1046. DOI: 10.1016/0098-1354(96)00181-0.[Crossref]
  • 24. Skogestad, S., Wittgens, B., Litto, R. & Sørensen, E. (1997). Multivessel batch distillation, AIChE J. 43(4), 971-978. DOI: 10.1002/aic.690430412.[Crossref]
  • 25. Hasebe, S., Noda, M. & Hashimoto, I. (1997). Optimal operation policy for multi-effect batch distillation system, Comput. Chem. Eng. 21, 1221-1226. DOI: 10.1016/S0098-1354(97)87669-7.[Crossref]
  • 26. Furlonge, H., Pantelides, C. & Sørensen, E. (1999). Optimal operation of multivessel batch distillation columns, AIChE J. 45(4), 781-801. DOI: 10.1002/aic.690450413.[Crossref]
  • 27. Hasebe, S., Noda, M. & Hashimoto, I. (1999). Optimal operation policy for total refl ux and multi-effect batch distillation systems, Comput. Chem. Eng. 23(4), 523-532. DOI: 10.1016/S0098-1354(98)00290-7.[Crossref]
  • 28. Wittgens, B. & Skogestad, S. (2000). Closed operation of multivessel batch distillation: Experimental verification, AIChE J. 46(6), 1209-1217. DOI: 10.1002/aic.690460613.[Crossref]
  • 29. Kurooka, T., Nishitani, H., Hasebe, S. & Hashimoto, I. (2001). Energy conservation by multi-effect batch distillation system, J. Chem. Eng. Jpn. 34(9), 1141-1146. DOI: 10.1252/ jcej.34.1141.[Crossref]
  • 30. Mahmud, M.T., Mujtaba, I.M. & Emtir, M. (2008). Optimal design and operation of multivessel batch distillation column with fixed product demand and strict product specifications, Comp. Aid. Chem. Engin., 25(1), 253-258. DOI: 10.1016/ S1570-7946(08)80047-8.[Crossref]
  • 31. Gruetzmann, S., Fieg, G. & Skogestad, S. (2009). Experimental and theoretical studies on the start-up operation of a multivessel batch distillation column, Ind. Eng. Chem. Res. 48(11), 5336-5343. DOI: 10.1021/ie800962b.[WoS][Crossref]
  • 32. Mujtaba, I. (2004). Batch Distillation. Design and operation. London, UK: Imperial College Press.
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0072
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.