Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 4 | 55-59

Article title

Ozone decomposition on ZnO catalysts obtained from different precursors

Content

Title variants

Languages of publication

EN

Abstracts

EN
Kinetic investigations for ozone conversion on three different series of zinc oxide catalysts, containing pure ZnO and doped with Mn or Cu one with dopant content less than 1 wt.% were carried out. The different samples were obtained from carbonate, nitrate and acetate precursors. The as prepared catalysts were characterized by AAS, XRD, IR, EPR and BET methods. The mean size of the crystallites determined by XRD data is in the range 27÷68 nm. The presence of Mn2+ and Cu2+ ions into the ZnO matrix was established by EPR. The ozone decomposition was investigated for 30÷75°C temperature range. The zinc carbonate precursor samples show highest activity, while the nitrate precursor ones show lowest activity toward reaction decomposition of ozone in the whole temperature range. At 75°C two of the catalyst, obtained from carbonate precursor - ZnO and CuZnO show 100% conversion.

Publisher

Year

Volume

16

Issue

4

Pages

55-59

Physical description

Dates

published
1 - 12 - 2014
online
11 - 12 - 2014

Contributors

  • Bulgarian Academy of Sciences, Institute of Catalysis, Acad. G. Bonchev Str., bl 11, Sofia 1113, Bulgaria
  • University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756, Sofia, Bulgaria
  • University of Chemical Technology and Metallurgy, 8 Kliment Ohridski, 1756, Sofia, Bulgaria
  • Bulgarian Academy of Sciences, Institute of General and Inorganic Chemistry, Akad. G. Bontchev str. bl 11, 1113, Sofia, Bulgaria

References

  • 1. Naik, S.P. & Fernandes, J.B. (1999). Temperature programmed desorption studies on a new active zinc oxide catalyst. Thermochim. Acta 332(1), 21-25. DOI: 10.1016/ S0040-6031(99)00063-5.[Crossref]
  • 2. Huang, W.J., Fang, G.C. & Wang, C.C. (2005). A nanometer-ZnO catalyst to enhance the ozonation of 2,4,6-trichlorophenol in water. Coll. Surf. A, 260, 45-51. DOI: 10.1016/j.colsurfa.2005.01.031.[Crossref]
  • 3. Jung, H., Choi, H. (2006). Catalytic decomposition of ozone and para - Chlorobenzoic acid (pCBA) in the presence of nanosized ZnO. Appl. Catal. B, 66, 288-294. DOI: 10.1016/j. apcatb.2006.03.009.[Crossref]
  • 4. Zhai, X., Chen, Z., Zhao, S., Wang, H. & Yang, L. (2010). Enhanced ozonation of dichloroacetic acid in aqueous solution using nanometer ZnO powders. J Environ. Sci., 22(10) 1527-1533. DOI: 10.1016/S1001-0742(09)60284-9.[WoS]
  • 5. Muruganandham, M. & Wu, J. (2008). Synthesis, characterization and catalytic activity of easily recyclable zinc oxide nanobundles. Appl. Catal. B. Environ., 80, 32-41. DOI: 10.1016/j.apcatb.2007.11.006.[Crossref][WoS]
  • 6. Dong, Y., Wang, G., Jiang, P., Zhang, A., Yue, L., Zhang, X. (2011). Simple preparation and catalytic properties of ZnO for ozonation degradation of phenol in water, Chin. Chem. Lett., 22, 209-212. DOI: 10.1016/j.cclet.2010.10.010.[Crossref]
  • 7. Xu, Z., Ben, Y., Chen, Z. & Qi, F. (2013). Facile synthesis of snowfl ake-like ZnO nanostructures at low temperature and their super catalytic activity for the ozone decomposition. Mater. Res. Bull., 48, 1725-1727. DOI: 10.1016/j.materresbull.2012.11.095.[Crossref]
  • 8. Chauvin, S., Saussey, J., Lavalley, J. & Djega-Mariadassou, G. (1986). Definition of polycrystalline ZnO catalytic sites and their role in CO hydrogenation. Appl. Catal. 25(1-2), 59-68. DOI: 10.1016/S0166-9834(00)81222-1.[Crossref]
  • 9. Rekha, K., Nirmala, M., Nair, M. & Anukaliani, A. (2010). Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Physica B, 405, 3180-3185. DOI: 10.1016/j.physb.2010.04.042.[WoS][Crossref]
  • 10. Bellini, J., Morelli, M. & Kiminami, R. (2002). Electrical properties of polycrystalline ZnO: Cu obtained from freeze- -dried ZnO + copper (II) acetate powders Mater. Sci. Mater. Electron. 13 (8), 485-489, DOI: 10.1023/a:1016160204435.[Crossref]
  • 11. Dodd, A., McKinley, A., Tsuzuki, T. & Saunders, M. (2009). Tailoring the Photocatalytic Activity of Nanoparticulate Zinc Oxide by Transition Metal Oxide Doping. Mater. Chem. Phys. 114, 382-386. DOI: 10.1016/j.matchmphys.2008.09.041.[WoS][Crossref]
  • 12. Nikolov, P., Milenova, K. & Mehandjiev, D. (2008). Decomposition of ozone over pure and doped with Cu and Mn zinc oxide. C. R. Acad. Bulg. Sci. 61, 1127.
  • 13. Xie, J., Li, Y., Zhao, W., Bian, L. & Wei, Y. (2011). Simple fabrication and photocatalytic activity of ZnO particles with different morphologies. Powder. Tech., 207, 140-144. DOI: 10.1016/j.powtec.2010.10.019.[Crossref]
  • 14. Saedy, S., Haghighi, M. & Amirkhosrow, M. (2012). Hydrothermal synthesis and physicochemical characterization of CuO/ZnO/Al2O3 nanopowder. Part I: Effect of crystallization time. Particuology 10, 729-736. DOI: 10.1016/j.partic.2012.05.001.[WoS][Crossref]
  • 15. Hung, C. (2009). Synthesis, characterization and performance of CuO/La2O3 composite catalyst for ammonia catalytic oxidation. Powder. Tech., 196, 56-61. DOI: 10.1016/j. powtec.2009.07.001.[Crossref]
  • 16. Diaconu, M., Schmidt, H., Pöppl, A.R., Böttcher, R., Hoentsch, J., Rahm, A., Hochmuth, H., Lorenz, M. & Grundmann, M. (2005). EPR study on magnetic Zn1−xMnxO. Superlat. Microst. 38, 413-420. DOI: 10.1016/j.spmi.2005.08.012.[Crossref]
  • 17. Singh, S., Chakradhar, R., Rao, J. & Karmakar, B., (2010). EPR, optical absorption and photoluminescence properties of MnO2 doped 23B2O3-5ZnO-72Bi2O3 glasses. Physica B, 405, 2157-2161. DOI: 10.1016/j.physb.2010.01.123.[Crossref]
  • 18. Clavel, G., Willinger, M., Zitoun, D. & Pinna, N., (2007). Solvent Dependent Shape and Magnetic Properties of Doped ZnO Nanostructures. Adv. Funct. Mater., 17(6), 3159-3169. DOI: 10.1002/adfm.200601142.[Crossref]
  • 19. Vethanathan, S., Brightson, M., Sundar, S. & Perumal, S., Synthesis of Mn doped ZnO nanocrystals by solvothermal route and its characterization. (2011). Mater. Chem. Phys., 125, 872-875. DOI: 10.1016/j.matchemphys.2010.09.029.[Crossref]
  • 20. Bogomolova, D., Jachkin, A., Krasil‘nikova, A., Bogdanov, L., Fedorushkova, B. & Khalilev, D. (1990). EPR of transition metals in fl uoroaluminate glasses. J. Non-Crystall Solids. 125, 32-39. DOI: 10.1016/0022-3093(90)90320-L.[Crossref]
  • 21. Srinivasan, G. & Kumar, J. (2008). Effect of Mn-doping on the microstructures and optical properties of sol gel derived ZnO thin films. J. Cryst. Growth. 310, 1841-1846. DOI: 10.1016/j. jcrysgro.2007.10.056.[Crossref]
  • 22. Xu, C., Cao, L., Su, G., Liu, W., Liu, H., Yu, Y. & Qu, X. (2010). Preparation of ZnO/Cu2O compound photocatalyst and application in treating organic dyes. J. Hazard. Mater. 176, 807-813. DOI: 10.1016/j.jhazmat.2009.11.106.[Crossref]
  • 23. Yan, Y., Al-Jassim, M.M. & Wei, S.H. (2006). Doping of ZnO by group-IB elements, Appl. Phys. Lett. 89, 181912. DOI: /10.1063/1.2378404.
  • 24. Milenova, K., Avramova, I. & Nikolov, P. (2013). Nanosized Cu/ ZnO catalytic systems -Characterization and activity toward ozone decomposition, J. Inter. Sci. Public.: Mater., Met. Technol., 7, Part 2, 462-471.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0070
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.