Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 4 | 6-13

Article title

Nano sized carbonized waste biomass for heavy metal ion remediation


Title variants

Languages of publication



Utilization of agricultural waste material with approach to enhance the heavy metal remediation properties by carbonizing the biomass at nano size particles has been explored in present investigation from aqueous solutions. In this study the lignocellulosic, nitrogenous agricultural waste biomass Delbergia sissoo pods (DSP) has been tried for sequestering of Cd (II), Pb (II) and Ni (II) metal ions from aqueous solutions. Batch experiments were performed for removal of targeted metal ions keeping in consideration the preliminary affecting parameters such as effect of adsorption dose, pH, initial metal ion concentration, stirring speed and contact time. The sorption studies were analyzed by using, Freundlic isotherm and Langmuir isotherm models. The kinetics of the process was evaluated by pseudo pseudo-first order and pseudo second order kinetic models. Studies reveal that the equilibrium was achieved with in 30 min of the contact time at optimized parameters. Analytical studies of biosorbent were done by means of FT-IR, SEM and XRD. Desorption experiments were carried out using HCl solution with a view to regenerate the spent adsorbent and to recover the adsorbed metal ions.









Physical description


1 - 12 - 2014
11 - 12 - 2014


  • Sant Longowal Institute of Engineering and Technology, Department of Chemistry, Longowal – 148106
  • Sant Longowal Institute of Engineering and Technology, Department of Chemistry, Longowal – 148106


  • 1. Khlifi, R. & Hamza-Chaffai, A. (2010). Head and neck cancer due to heavy metal exposure via tobacco smoking and professional exposure: A review. Toxicol. Appl. Pharma. 248, 71-88. DOI: 10.1016/j.taap.2010.08.003.[Crossref]
  • 2. Ming-Ho, Y. (2005). Environmental Toxicology: Biological and Health Effects of Pollutants, Chap. 12, CRC Press LLC, 2nd Edition, BocaRaton, USA. DOI: 10.5271/sjweh.1888.[Crossref]
  • 3. Agency for Toxic Substance and Disease Registry (ATSDR). (2003b). Toxicological Profile for Mercury U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
  • 4. Agency for Toxic Substances and Disease Registry (ATSDR). (2004). Toxicological Profile for Copper. U.S. Department of Health and Humans Services, Public Health Service, Centers for Diseases Control. Atlanta.
  • 5. Agency for Toxic Substance and Disease Registry (ATSDR). (2007). Toxicological Profile for Lead U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
  • 6. Agency for Toxic Substance and Disease Registry (ATSDR). (2008). Draft Toxicological Profile for Cadmium U.S. Department of Health and Humans Services, Public Health Humans Services, Centers for Diseases Control. Atlanta.
  • 7. Castro-González, M.I. & Méndez-Armenta, M. (2008). Heavy metals: Implications associated to fish consumption. Environ. Toxico. Pharma. 26, 263-271. DOI: 10.1016/j.etap.2008.06.001.[Crossref]
  • 8. European Commission. (2006). Regulation (EC) No 1881/2006. JO L364, 20.12.06, 5-24.
  • 9. Figueroa, E. (2008). Are more restrictive food cadmium standards justifiable health safety measures or opportunistic barriers to trade? An answer from economics and public health. Sci. Total Environ., 389, 1-9.[WoS]
  • 10. Saeed, A. & Iqbal, M. (2003). Bioremoval of Cd from aqueous solution by black gram husk (cicer arientinum). Water Res. 37, 3472-3480.[Crossref]
  • 11. Sud, D., Mahajan, G. & Kaur, M.P. (2008). Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - A review. Biores. Technol. 99, 6017-6027. DOI: 10.1016/j.biortech.2007.11.064.[Crossref]
  • 12. Mahajan, G. & Sud, D. (2011). Kinetics and equilibrium studies of chromium (VI) metal ion remediation by Arachis hypogea shells-A green approach. BioRes. 6(4), 3324-3338.
  • 13. Mahajan, G. & Sud, D. (2012). Modified agricultural waste biomass with enhanced responsive properties for metal ion remediation: a green approach. Appl. Water Sci. 2, 299-308. DOI: 10.1007/s13201-012-0050-5.[Crossref]
  • 14. Hanif, M.A., Nadeem, R., Zafar, M.N., Akhtar, K., Bhatti, H.N. (2007). Nickel (II) biosorption by Cassia fistula biomass. J. Hazard. Mater. 139, 345-355. DOI: 10.1016/j.jhazmat. 2006.06.040.[Crossref]
  • 15. Garg, U.K., Kaur, M.P., Garg V.K. & Sud, D. (2008). Removal of Ni (II) from aqueous solution by adsorption on agricultural waste biomass using a response surface methodological approach. Biores. Technol. 99, 1325-1331. DOI: 10.1016/j. biortech.2007.02.011.[Crossref]
  • 16. Ahluwalia, S.S. & Goyal, D. (2005). Removal of heavy metals from waste tea leaves from aqueous solution. Eng. Life Sci. 5, 158-162. DOI: 10.1002/elsc.200420066.[Crossref]
  • 17. Malkoc, E. & Nuhoglu, Y. (2005). Investigation of Ni (II) removal from aqueous solutions using tea factory waste. J. Hazard. Mater. 127, 120-128. DOI: 10.1016/j.jhazmat.2005.06.030.[Crossref]
  • 18. Sciban, M., Klasnja, M. & Skrbic, B. (2006). Modified hardwood sawdust as adsorbent of heavy metal ions from water. Wood Sci. Technol. 40, 217-227. DOI: 10.1007/s00226-005-0061-6.[Crossref]
  • 19. Bacaoui, A., Yaacoubi, A., Dahbi, A., Bennouna, C., Phan Tan Luu, R., Maldonado-Hodar, F.J., Rivera-Utrilla, J. & Moreno-Castilla, C. (2001). Optimization of conditions for the preparation of activated carbons from olive-waste cakes. Carbon 39, 425-432. DOI: 10.1016/S0008-6223(00)00135-4.[Crossref]
  • 20. Gupta, V.K., Mittal, A. & Gajbe, V. (2005). Adsorption and desorption studies of a water soluble dye, quinoline yellow, using waste materials. J. Coll. Inter. Sci. 284, 89-98. DOI: 10.1016/j.jcis.2004.09.055.[Crossref]
  • 21. Mohan, D., Gupta, V.K., Srivastava, S.K. & Chander, S. (2001). Kinetics of mercury adsorption from wastewater using activated carbon derived from fertilizer waste. Coll. Surface. A 177, 169-181.
  • 22. Mohan, D. & Singh, K.P. (2002). Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse-an agricultural waste. Water Res. 36, 2304-2318. DOI: 10.1016/S0043-1354(01)00447.[Crossref]
  • 23. Özer, A., Tanyildizi, M.S., Tu¨men, F. (1998). Study of cadmium adsorption from aqueous solution on activated carbon from sugar beet pulp. Environ. Technol. 19, 1119-1126. DOI: 10.1080/09593331908616770.[Crossref]
  • 24. Osvaldo Jr., K., Gurgel, Leandro Vinicius Alves, de Melo, Julio Cesar Perin, Vagner, R.B., Tania, M.S.M., de Freitas Gil, Rossimiriam Pereira, Gil, Laurent Frederic. (2007). Adsorption of heavy metal ion from aqueous single metal solution by chemically modified sugarcane bagasse. Biores. Technol. 98, 1291-1297. DOI: 10.1016/j.biortech.2006.05.013.[Crossref]
  • 25. Mohsin, K., Anwar, R.S., Nadeem, F., Amir, Y. & Ahmad, S.W. (2013). Removal of phenol from wastewater using activated waste tea leaves. Polish J. Chem. Technol. 15,1-6. DOI: 10.1007/s11814-011-0072-y. 16.[Crossref]
  • 26. Standard Methods for the Examination of Water and Wastewater. (1995). ISBN 0-87553-207-1. American Public Health Association (16th ed.) Washington, DC.
  • 27. Karthikeyan, T., Rajgopal, S. & Miranda, L.R. (2005). Chromium (VI) adsorption from aqueous solution by Hevea brasilinesis sawdust activated carbon. J. Hazard. Mater. 124, 192-199. DOI: 10.1016/j.jhazmat.2005.05.003.[Crossref]
  • 28. Naiya, T.K., Chowdhury, P.A., Bhattacharya, K., Das, S.K. (2009). Saw dust and neem bark as low-cost natural biosorbent for adsorptive removal of Zn (II) and Cd (II) ions from aqueous solutions. Chem. Engg. J. 148, 68-79.
  • 29. Naiya, T.K.A., Bhattacharya, K. & Das, S.K. (2009). Adsorption of Cd (II) and Pb (II) from aqueous solutions on activated alumina. J. Coll. Inter. Sci. 333 14-26. DOI: 10.1016/j. jcis.2009.01.003.[Crossref]
  • 30. Naiya, T.K., Chowdhury, P.A., Bhattacharya, K. & Das, S.K. (2009). Adsorptive removal of Cd (II) ions from aqueous solutions by rice husk ash. Environ. Progr. 28 535-546.[Crossref]
  • 31. Naiya, T.K., Chowdhury, P.A., Bhattacharya, K. & Das, S.K. (2008). Removal of Cd (II) from aqueous solutions using clarified sludge. J. Coll. Inter.W Sci. 325 48-56.
  • 32. Goel, J., Kadirvelu, K., Rajagopal, C. & Garg, V.K. (2005). Removal of lead (II) by adsorption using treated granular activated carbon: Batch and column studies. J. Hazard. Mater. 125, 211-220.[Crossref]
  • 33. Bansal, M., Singh, D. & Garg, V. K. (2009). A comparative study for the removal of hexavalent chromium from aqueous solutions by agricultural wastes carbons. J. Hazard. Mater. 171, 83-92. DOI: 10.1016/j.jhazmat.2009.05.124.[Crossref][WoS]
  • 34. Ho, Y.S. & Mackay, G. (1998). Kinetic models for the adsorption of dye from aqueous solutions by wood. J. Env. Sci. Health. 76, 183-187.
  • 35. Koynucu, H. (2008). Adsorption kinetics of 3-hydroxybenzaldehyde on native and activated bentonite. Appl. Clay Sci. 38, 279-282.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.