Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 3 | 40-44

Article title

Fabrication of Electrochemical Nanoelectrode for Sensor Application Using Focused Ion Beam Technology


Title variants

Languages of publication



The capabilities and applications of the focused ion beam (FIB) technology for detection of an electrochemical signal in nanoscale area are shown. The FIB system, enabling continuous micro- and nanofabrication within only one equipment unit, was used to produce a prototype of electrochemical nanometer-sized electrode for sensor application. Voltammetric study of electrochemically active compound (ferrocenemethanol) revealed the diffusion limiting current (12 pA), corresponding to a disc (planar) nanoelectrode with about 70 nm diameter of contact area. This size is in a good accordance with the designed contact-area (50 nm × 100 nm for width × thickness) of the FIB-produced nanoelectrode. It confirms that produced nanoelectrode is working properly in liquid solution and may enable correct measurements in nanometer-sized regions.









Physical description


1 - 9 - 2014
3 - 10 - 2014


  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Polish Academy of Sciences, Institute of Physical Chemistry, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Electron Technology, al. Lotników 32/46, 02-668 Warsaw, Poland


  • 1. Tseng, A.A. (2005). Recent Developments in Nanofabrication Using Focused Ion Beams. Nanofabrication 1 (10), 924-939. DOI: 10.1002/smll.200500113.[Crossref]
  • 2. Balasubramanian, K. (2010). Challenges in the use of 1D nanostructures for on-chip biosensing and diagnostics: A review. Biosensors and Bioelectronics 26(4), 1195-1204. DOI:10.1016/j. bios.2010.07.041.[Crossref]
  • 3. Walker, G.M., Ramsey, J.M., Cavin, R.K., Herr, D.J., Merzbacher, C.I. & Zhirnov, V. (2009, February). A Framework for Bioelectronics Discovery and Innovation. National Institute of Standards and Technology. Retrieved April 25, 2012, from http://www.nist.gov/pml/div683/upload/bioelectronics_report.pdf
  • 4. Wang, J. (2006). Electrochemical biosensors: Towards point-of-care cancer diagnostics. Biosensors and Bioelectronics 21(10), 1887-1892. DOI:10.1016/j.bios.2005.10.027.[WoS][Crossref]
  • 5. Sadik, O.A., Mwilu, S.K. & Aluoch, A. (2010). Smart electrochemical biosensors: From advanced materials to ultrasensitive devices. Electrochimica Acta 55, 4287-4295. DOI:10.1016/j.electacta.2009.03.008.[WoS][Crossref]
  • 6. Murray, R.W. (2008). Nanoelectrochemistry: Metal Nanoparticles, Nanoelectrodes, and Nanopores. Chem. Rev. 108(7), 2688-2720. DOI: 10.1021/cr068077e.[Crossref][WoS]
  • 7. Fan, F.R.F. & Bard, A.J. (1995). Electrochemical Detection of Single Molecules, Science 267, 871-875. DOI: 10.1126/ science.267.5199.871.[Crossref]
  • 8. Li, Y.X., Cox, J.T. & Zhang, B. (2010). Electrochemical Responses and Electrocatalysis at Single Au Nanoparticles. J. Am. Chem. Soc. 132(9), 3047-3054. DOI: 10.1021/ja909408q.[Crossref]
  • 9. Krapf, D., Quinn, B.M., Wu, M.Y., Zandbergen, H.W., Dekker, C. & Lemay, S.G. (2006). Experimental observation of nonlinear ionic transport at the nanometer scale. Nano Letters 6(11), 2531-2535. DOI: 10.1021/nl0619453.[Crossref]
  • 10. Sun, P. & Mirkin, M.V. (2006). Kinetics of Electron- -Transfer Reactions at Nanoelectrodes. Anal. Chem. 78(18), 6526-6534. DOI: 10.1021/ac060924q.[Crossref]
  • 11. Sun, P., Laforge, F.O., Abeyweera, T.P., Rotenberg, S.A., Carpino, J. & Mirkin, M.V. (2008). Nanoelectrochemistry of mammalian cells. Proceedings of the National Academy of Sciences of the United States of America 105(2), 443-448. DOI: 10.1073/pnas.0711075105.[Crossref]
  • 12. Velmurugan, J., Noel, J.M., Nogala, W. & Mirkin, M.V. (2012). Nucleation and Growth of Metal on Nanoelectrodes. Chem. Sci. 3, 3307-3314. DOI: 10.1039/C2SC21005C.[Crossref][WoS]
  • 13. Velmurugan, J., Zhan, D.P. & Mirkin, M.V. (2010). Electrochemistry through glass. Nature Chem. 2, 498-502. DOI:10.1038/nchem.645.[Crossref][WoS]
  • 14. Zhan, D.P., Velmurugan, J. & Mirkin, M.V. (2009). Adsorption/Desorption of Hydrogen on Pt Nanoelectrodes: Evidence of Surface Diffusion and Spillover. J. Am. Chem. Soc. 131(41), 14756-14760. DOI: 10.1021/ja902876v.[Crossref]
  • 15. Sun, P. & Mirkin, M.V. (2008). Electrochemistry of Individual Molecules in Zeptoliter Volumes. J. Am. Chem. Soc. 130(26), 8241-8250. DOI: 10.1021/ja711088j.[Crossref]
  • 16. Arrigan, D.W.M. (2004) Nanoelectrodes, nanoelectrode arrays and their applications. Analyst 129, 1157-1165. DOI: 10.1039/B415395M.[Crossref]
  • 17. Errachid, A., Mills, C.A., Pla-Roca, M., Lopez, M.J., Villanueva, G., Bausells, J., Crespo, E., Teixidor, F. & Samitier, J. (2008). Focused ion beam production of nanoelectrode arrays. Mater. Sci. Engin. C 28, 777-780. DOI: 10.1016/j. msec.2007.10.077.[Crossref][WoS]
  • 18. Lanyon, Y.H., De Marzi, G., Watson, Y.E., Quinn, A. J., Gleeson, J.P., Redmond, G. & Arrigan, D.W.M. (2007). Fabrication of Nanopore Array Electrodes by Focused Ion Beam Milling. Anal. Chem. 79(8), 3048-3055. DOI: 10.1021/ ac061878x.[Crossref][WoS]
  • 19. Santschi, C., Jenke, M., Hoffmann, P. & Brugger, J. (2006). Interdigitated 50 nm Ti electrode arrays fabricated using XeF2 enhanced focused ion beam etching. Nanotechnology 17, 2722-2729. DOI:10.1088/0957-4484/17/11/0021.[Crossref]
  • 20. Triroj, N., Jaroenapibal, P., Shi, H., Yeh, J.I. & Beresford, R. (2011). Microfl uidic chip-based nanoelectrode array as miniaturized biochemical sensing platform for prostate-specific antigen detection. Biosensors and Bioelectronics 26, 2927-33. DOI: 10.1016/j.bios.2010.11.039.[Crossref][WoS]
  • 21. Moretto, L.M., Tormen, M., De Leo, M., Carpentiero, A. & Ugo, P. (2011). Polycarbonate-based ordered arrays of electrochemical nanoelectrodes obtained by e-beam lithography. Nanotechnology 22, 185305 (7pp). DOI:10.1088/0957-4484/22/18/185305.[Crossref][WoS]
  • 22. Lanyon, Y.H. & Arrigan, D.W.M. (2008). Nanostructured materials in electrochemistry. In A. Eftekhari (Ed.), Top-down approaches to the fabrication of nanopatterned electrodes (pp. 187-210). Weinheim: Wiley-VCH Verlag GmbH & Co. KGaA. DOI: 10.1002/9783527621507.ch3. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.