Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 3 | 25-29

Article title

Interaction of SiO2 Nanoparticles with Seed Prechilling on Germination and Early Seedling Growth of Tall Wheatgrass (Agropyron Elongatum L.)

Content

Title variants

Languages of publication

EN

Abstracts

EN
The effect of six SiO2 nanosized concentrations (0, 5, 20, 40, 60 and 80 mg L-1) and three seed prechilling treatments (control, seed prechilling before nano SiO2 treatments, treatments of seed with nano SiO2 before prechilling) on germination and seedling growth of tall wheatgrass (Agropyron elongatum L.) were studied. Results indicated that application of SiO2 nanoparticles significantly increased seed germination of tall wheatgrass from 58 percent in control group to 86.3 and 85.7 percent in 40 and 60 mg L-1, respectively. Applying SiO2 nanoparticles increased dry weight of shoot, root and seedling of tall wheatgrass. Increasing concentration of nanoparticle from 0 up to 40 mg L-1 increased seedling weight around 49 percent compared to the control, nevertheless decreased under 60 and 80 mg L-1 treatments. In conclusion, seed prechilling in combination with SiO2 nanoparticles largely broke the seed dormancy for A. elongatum.

Publisher

Year

Volume

16

Issue

3

Pages

25-29

Physical description

Dates

published
1 - 9 - 2014
online
3 - 10 - 2014

Contributors

author
  • Gorgan University of Agricultural Sciences and Natural Resources, Faculty of Range Land and Watershed Management, Gorgan, Iran
  • Ferdowsi University of Mashhad, Faculty of Natural Resources and Environment, Mashhad, Iran
author
  • University of Torbat-e-Heydarieh, Faculty of Agriculture and Natural Resources, Torbat-e-Heydarieh, Iran
author
  • Institute for Advanced Studies in Basic Sciences (IASBS), Department of Physics, Gava zang, Zanjan, Iran

References

  • 1. Harris, D. ( 1996). The effects of manure, genotype, seed priming, depth and date of sowing on the emergence and early growth of (Sorghum bicolor L.) Moench in semi-arid Botswana. Soil Tillage Research 40, 73-88. DOI:10.1016/S0167-1987(96)80007-9.[Crossref]
  • 2. Chen, F. & Bradford, K.J. (2000). Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology 124, 1265-1274. DOI :11080302. PMCID:PMC59224.
  • 3. Khot, L.R., Sankaran, S., Mari Maja, J., Ehsani, R. & Schuster, E.W. (2012). Applications of nanomaterials in agricultural production and crop protection: A review. Crop Protection 35, 64-70. DOI: 10.1016/j.cropro.2012.01.007.[WoS][Crossref]
  • 4. Guo, Z. (2000). Synthesis of the needle-like silica nanoparticles by biomineral method [J]. Chemical Journal of Chinese Universities 21(6), 847-848.
  • 5. Hu, Y. & Schmidhalter, U. (2005). Drought and salinity: A comparison of their effects on mineral nutrition of plants. Journal Plant Nutrition Soil Science 168, 541-549. DOI: 10.1002/ jpln.200420516.[Crossref]
  • 6. Romero-Aranda, M.R., Jurado, O. & Cuartero, J. (2006). Silicon alleviates the deleterious salt effect on tomato plant growth by improving plant water status. Journal of Plant Physiology 163, 847-855. DOI: 10.1016/j.jplph.2005.05.010.[Crossref]
  • 7. Agarie, S., Hanaoka, N., Ueno, O., Miyazaki, A., Kubota, F., Agata, W. & Kaufman, P.B. (1998). Effects of silicon on tolerance to water deficit and heat stress in rice plants (Oryza sativa L.), monitored by electrolyte leakage. Plant Production Science 1, 96-103. DOI: 10.1002/jpln.200420516541 p://dx.doi. org/10.1626/pps.1.96.[Crossref]
  • 8. Ross, J.J., Murfet, I.C. & Reid, J.J. (1997). Gibberellin mutants. Physiology Plant 100, 550-560. DOI: 10.1111/j.1399-3054.1997.tb03060.x.[Crossref]
  • 9. Hamayun, M., Sohn, E., Afzal Khan, S., Shinwari, Z., Latif Khan A. & Lee. I. (2010). Silicon alleviates the adverse effects of salinity and drought stress on growth and endogenous plant growth hormones of soybean (Glycine max L.). Pakistan Journal Botany 42(3), 1713-1722.
  • 10. Lin, B., Diao, S., Li, C., Fang, L., Qiao, S. & Yu, M. (2004). Effect of TMS (nanostructured silicon dioxide) on growth of Changbai larch seedlings. Journal of Forestry Research 15(2), 138-140. DOI: 10.1007/BF02856749.[Crossref]
  • 11. Tahir, M. Rahmatullah, A., Aziz, T. & Ashraf, M. (2010) Wheat genotypes differed significantly in their response to silicon nutrition under salinity stress. Journal of Plant Nutrition 33, 1658-1671. DOI: 10.1080/01904167.2010.496889.[Crossref][WoS]
  • 12. Lu, C.M., Zhang, C.Y., Wu, J.Q. & Tao, M.X. (2002). Research of the effect of nanometer on germination and growth enhancement of Glycine max and its mechanism. Soybean Science 21, 168-172.
  • 13. Zheng, L., Hong, F., Lu, S. & Liu, C. (2005). Effect of nano-TiO2 on strength of naturally aged seeds and growth of Spinach. Biological Trace Element Research 105, 83-91. DOI: 10.1385/BTER:104:1:083.[Crossref]
  • 14. Bassiri, M., Wilson, A.M., Crami, B. (1988). Dehydration effects on seedling development of four range species. Journal Range Management. 41(5), 383-386.
  • 15. Asgedom, H. & Becker, M. (2001). Effects of seed priming with nutrient solutions on germination, seedling growth and weed competitiveness of cereals in Eritrea. In: Proc. Deutscher Tropentag, University of Bonn and ATSAF, Magrraf Publishers Press, Weickersheim. 282p.
  • 16. ISTA. (2009). ISTA rules. International Seed Testing Association. Zurich, Switzerland.
  • 17. Feizi, H., Kamali, M., Jafari, L. & Rezvani Moghaddam P. (2013). Phytotoxicity and stimulatory impacts of nanosized and bulk titanium dioxide on fennel (Foeniculum vulgare Mill). Chemosphere 91, 506-511. DOI: 10.1016/j.chemosphere.2012.12.012.[Crossref][WoS]
  • 18. Feizi, H., Rezvani Moghaddam, P., Shahtahmassebi, N. & Fotovat, A. (2012). Impact of bulk and nanosized titanium dioxide (TiO2) on wheat seed germination and seedling growth. Biological Trace Element Research 146,101-106. DOI: 10.1007/ s12011-011-9222-7.[WoS][Crossref]
  • 19. Lee, W., Kwak, J. & An, Y. (2012). Effect of silver nanoparticles in crop plants Phaseolus radiatus and Sorghum bicolor: Media effect on phytotoxicity. Chemosphere 86: 491-499. DOI: 10.1016/j.chemosphere.2011.10.013.[WoS][Crossref]
  • 20. Matthews, S. & Khajeh-Hosseini, M. (2007). Length of the lag period of germination and metabolic repair explain vigor differences in seed lots of maize (Zea mays). Seed Sci Technol; 35:200-212.[Crossref][WoS]
  • 21. Vashisth, A. & Nagarajan, S. (2010). Effect on germination and early growth characteristics in sunfl ower (Helianthus annuus) seeds exposed to static magnetic field. Journal Plant Physiology 167, 149-156. DOI: 10.1016/j.jplph.2009.08.011.[WoS][Crossref]
  • 22. Hartmann, H.T., Kester, D.E. & Davies, F.T. 1990. Plant propagation: principles and practices. Prentice Hall, Englewood Cliffs, New Jersey. 647p.
  • 23. Chen, K. & Arora, R. (2012). Priming memory invokes seed stress-tolerance. Environment Experimental Botany. In press. DOI: 10.1016/j.envexpbot.2012.03.005.[Crossref]
  • 24. Khodakovskaya, M., Dervishi, E., Mahmood, M., Xu, Y., Li, Z. & Watanabe, F. (2009). Carbon nanotubes are able to penetrate plant seed coat and dramatically affect seed germination and plant growth. ACS Nano 3(10), 3221-7. DOI: 10.1021/nn900887m.[WoS][Crossref]
  • 25. Zhu, J., Wei, G., Li, J., Qian, Q., Yu, J. (2004). Silicon alleviates salt stress and increases antioxidant enzymes activity in leaves of salt-stressed cucumber (Cucumis sativus L.). Plant Science 167,527-533, DOI: 10.1016/j.plantsci.2004.04.020.[Crossref]
  • 26. Varier, A., Vari, A.K. & Dadlani, M. (2010). The subcellular basis of seed priming. Current Science 99, 450-456.
  • 27. Li, F., Wu, X., Tsang, E., Cutler, A.J. (2005). Transcriptional profiling of imbibed Brassica napus seed. Genomics 86, 718-730. DOI: 10.1016/j.ygeno.2005.07.006.[Crossref]
  • 28. Clément, L., Hurel, C. & Marmier, N. (2012). Toxicity of TiO2 nanoparticles to cladocerans, algae, rotifers and plants - Effects of size and crystalline structure. Chemosphere 90, 1083-1090. DOI: 10.1016/j.chemosphere.2012.09.013. [WoS]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0045
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.