Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 3 | 18-24

Article title

The Influence of Technological PVD Process Parameters on the Topography, Crystal and Molecular Structure of Nanocomposite Films Containing Palladium Nanograins


Title variants

Languages of publication



The paper describes the preparation and characteristics of films composed of Pd nanograins placed in carbonaceous matrix. Films were obtained in PVD (Physical Vapor Deposition) process from two sources containing: the first one - fullerene powder and the second one - palladium acetate. The topographical, morphological and structural changes due to different parameters of PVD process were studied with the use of Atomic Force Microscopy and Scanning Electron Microscopy, whereas the structure was studied with the application of the Transmission Electron Microscopy and Fourier Transform Infrared Spectroscopy methods. It was shown that topographical changes are connected with the decomposition ratio of Pd acetate as well as the form of carbonaceous matrix formed due to this decomposition. Palladium nanograins found in all films exhibit the fcc structure type and their diameter changes from 2 nm to 40 nm depending on the PVD process parameters.


palladium   carbon   SEM   AFM   TEM   FTIR  









Physical description


1 - 9 - 2014
3 - 10 - 2014


  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Institute of Physics PAS, al. Lotników 32/46, 02-668 Warsaw, Poland
  • Institute of Physics PAS, al. Lotników 32/46, 02-668 Warsaw, Poland


  • 1. Kulkarni, G.U., Thomas, P.J. & Rao, C.N.R. (2002). Mesoscale organization of metal nanocrystals. Pure Appl. Chem. 74(9), 1581-1591. DOI: 10.1351/pac200274091581.[Crossref]
  • 2. Züttel, A., Nützenadel, Ch., Schmid, G., Chartouni, D. & Schlapbach, L. (1999). Pd-cluster size effects of the hydrogen sorption properties. J. All. Comp. 293-295, 472-475. DOI: 10.1016/S0925-8388(99)00467-3.[Crossref]
  • 3. Offermans, P., Tong, H.D., van Rijn, C.J.M., Merken, P., Brongersma, S.H. & Crego-Calama, M. (2009). Ultralow-power hydrogen sensing with single palladium nanowires. Appl. Phys. Lett. 94, 22, 223110. DOI: 10.1063/1.3132064.[Crossref][WoS]
  • 4. Joshi, R.K., Krishnan, S., Yoshimura, M. & Kumar, A. (2009). Pd Nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191-1196. DOI: 10.1007/s11671-009-9379-6.[Crossref][WoS]
  • 5. Zhao, Z., Knight, M., Kumar, S., Eisenbraun, E.T. & Carpenter, M.A. (2006). Humidity effects on Pd/Au-based all-optical hydrogen sensors, Sens. and Actuators B: Chem. 129, 726-733. DOI: 10.1016/j.snb.2007.09.032.[Crossref]
  • 6. Czerwosz, E., Diduszko, R., Dłużewski, P., Kęczkowska, J., Kozłowski, M., Rymarczyk, J. & Suchańska, M. (2008). Properties of Pd nanocrystals prepared by PVD method. Vacuum 82, 372-376. DOI: 10.1016/j.vacuum.2007.08.003.[Crossref]
  • 7. Czerwosz, E., Dłużewski, P., Kowalska, E., Kozłowski, M. & Rymarczyk, J. (2011). Properties of Pd-C films for hydrogen storage applications. Phys. Status Solidi C 8, 2527-2531. DOI: 10.1002/pssc.201000978.[Crossref]
  • 8. Sobczak, K., Dłużewski, P., Witkowski, B.S., Dąbrowski, J., Kozłowski, M., Kowalska, E. & Czerwosz, E. (2012). TEM and CL investigation of Pd nanograins included in carbonaceous films. Solid State Phenomena 186, 177-181. DOI :10.4028/ www.scientific.net/SSP.186.177.[Crossref]
  • 9. Rymarczyk, J., Kamińska, A., Kęczkowska, J., Kozłowski, M. & Czerwosz, E. (2013). Morphological, topographical and FTIR characterizations of Pd-C films, Optica Applicata XLIII, 123-132. DOI: 10.5277/oa130116.[WoS][Crossref]
  • 10. Kamińska, A., Krawczyk, S., Kozłowski, M., Czerwosz, E. & Sobczak, K. (2013). Kinetics of interaction of hydrogen with nanostructured C-Pd films for hydrogen sensing. Sensor Lett. 11, 500-504. DOI: 10.1166/sl.2013.2915.[WoS][Crossref]
  • 11. Kuzmany, H. & Winter, J. (2000). Vibrational properties of fullerenes and fullerides. In W.Andreoni W. (ed) The Physics of Fullerene-Based and Fullerene-Related Materials (pp. 203-248). Springer Science+Business Media Dordrecht.. DOI: 10.1007/978-94-011-4038-6.[Crossref]
  • 12. Vaez-Taghavi, H. & Hirata, A. (2012). Effective pre- -treatments of fullerenes to be sublimated for deposition of amorphous carbon films in electron beam excited plasma, Diamond & Related Materials 30, 9-14. DOI: 10.1016/j.diamond. 2012.09.002.[Crossref][WoS]
  • 13. Iglesias-Groth, S., Cataldo, F. & Manchado, A. (2011). Infrared spectroscopy and integrated molar absorptivity of C60 and C70 fullerenes at extreme temperatures. Mon. Not. R. Astron. Soc. DOI: 10.1111/j.1365-2966.2011.18124.x.[WoS][Crossref]
  • 14. Fang, Q., He, G., Cai, W.P., Boyd, I.W. & Zhang, J-Y. (2004). Palladium nanoparticles on silicon by photo-reduction using 172 nm excimer UV lamps, Appl. Surf. Sci. 226, 7-11. DOI: 10.1016/j.apsusc.2003.12.014.[Crossref]
  • 15. Zhang, J.Y. & Boyd, I.W. (1997). Photo-decomposition of thin palladium acetate films with 126 nm radiation, Appl. Phys. A 65, 379-382. DOI: 10.1007/s003390050595.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.