Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 82-86
Article title

Separation of 1,3-Propanediol from Aqueous Solutions by Ion Exchange Chromatography

Title variants
Languages of publication
1,3-propanediol is a promising monomer with many applications and can be produced by bioconversion of renewable resources. The separation of this product from fermentation broth is a difficult task. In this work, the application of cation exchange resin for the separation of 1,3-propanediol from model aqueous solution was examined. The best effect of separation of 1,3-propanediol from glycerol using sorption method was obtained for H+ resin form, although the observed partition coefficient of 1,3-propanediol was low. On the basis of the results of the sorption of 1,3-propanediol, the ionic forms of the resin were selected and used in the next experiments (H+, Ca2+, Ag+, Na+, Pb2+, Zn2+). The best results in ion exchange chromatography were obtained for cation exchange resin in H+ and Ca2+ form. The use of smaller particle size of resin and a longer length of the column allows to obtain better separation of mixtures.

Physical description
26 - 6 - 2014
  • Poznan University of Technology, Institute of Technology and Chemical Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznan, Poland,
  • Poznan University of Technology, Institute of Technology and Chemical Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznan, Poland,
  • 1. Posada, J.A., Rincon, L.E. & Cardona, C.A. (2012). Design and analysis of biorefineries based on raw glycerol: Addressing the glycerol problem. Bioresource Technol. 111, 282–293. DOI: 10.1016/j.biortech.2012.01.151.[WoS][Crossref]
  • 2. Xiu, Z.L. & Zeng, A.P. (2008). Present state and perspective of downstream processing of biologically produced 1,3-propanediol and 2,3-butanediol. Appl. Microbiol. Biotechnol. 78, 917–926. DOI: 10.1007/s00253-008-1387-4.[Crossref][WoS]
  • 3. Anand, P., Saxena, R.K. & Marwah, R.G. (2011). A novel downstream process for 1,3-propanediol from glycerol-based fermentation. Appl Microbiol Biotechnol 90, 1267–1276. DOI: 10.1007/s00253-011-3161-2.[Crossref][WoS]
  • 4. Hilaly, A.K. & Binder, T.P. (2002). U.S. Patent No. 6,479,716.
  • 5. Roturie r, J.M., Fouache, C. & Berghmans, E. (2002). U.S. Patent No. 6,428,992.
  • 6. Wilkins, A.E. & Lowe, D.J. (2004). U.S. Patent No. 6,812,000.
  • 7. Adkesso n, D.M., Alsop, A.W., Ames, T.T., Chu, L.A., Disney, J.M., Dravis, B.C., Fitzgibbon, P., Gaddy, J.M., Gallagher, F.G., Lehnhardt, W.F., Lievense, J.C., Luyben, M.L., Seapan, M., Trotter, R.E., Wenndt, G.M. & Yu, E.K. (2005). U.S. Patent No. 2005/0069997.
  • 8. Cho, M. H., Joen, S.I., Pyo, S.H., Mun, S. & Kim, J.H. (2006). A novel separation and purification process for 1,3-propanediol. Process Biochem. 41, 739–744. DOI: 10.1016/j. procbio.2005.11.013.[Crossref]
  • 9. Barski, P., Kowalczyk, J., Lindstaedt, A., Puzewicz-Barska, J. & Witt, D. (2012). Evaluation of solid phase extraction for downstream separation of propane-1,3-diol and butan-1-ol from fermentation broth. Process Biochem. 47, 1005–1010. DOI: 10.1016/j.procbio.2012.03.013.[Crossref][WoS]
  • 10. Corbin, D.R. & Norton, T. (2003). U.S. Patent No. 6,603,048.
  • 11. Luerruk, W., Shotipruk, A., Tantayakom, V., Prasitchoke, P., Muangnapoh, C. (2009). Adsorption of 1,3-propanediol from synthetic mixture using polymeric resin as adsorbents. Front. Chem. Eng. China 3(1), 52–57. DOI: 10.1007/s11705-009-0087-7.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.