Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 77-81

Article title

Infiuence of Hydrogen on the Properties of Nanostructured C-Pd Films for Sensing Applications

Content

Title variants

Languages of publication

EN

Abstracts

EN
In this paper we present the results of the investigations of nanostructured C-Pd films for hydrogen sensing applications. These C-Pd films were prepared by physical vapor deposition and then annealed in an argon flow at the temperature of 500°C. The structure and morphology of the prepared C-Pd films were investigated using transmission electron microscopy and energy dispersive X-ray spectroscopy. We studied the infiuence of hydrogen on the electrical properties and crystal structure of C-Pd films. It was shown that film resistance changes depended on hydrogen concentration. At lower hydrogen concentration (up to 2 vol.%), the films response increased proportionally to [H2], while above 2 vol.% H2, it was almost constant. This is connected with the formation of a solid solution of hydrogen in palladium at lower H2 concentration and the creation of palladium hydride at higher H2 concentration. X-ray diffraction was used to confirm the formation of Pd-H solid solution and palladium hydride.

Publisher

Year

Volume

16

Issue

2

Pages

77-81

Physical description

Dates

online
26 - 6 - 2014

Contributors

  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
  • Tele and Radio Research Institute, Ratuszowa 11, 03-450 Warsaw, Poland
author
  • Institute of Physics, PAS, al. Lotnikow 32/46, 02-668 Warsaw, Poland

References

  • 1. Zeng, X.Q., Latimer, M.L., Xiao, Z.L., Panuganti, S., Welp, U., Kwok, W.K. & Xu, T. (2011). Hydrogen gas sensing with networks of ultrasmall palladium nanowires formed on filtration membranes. Nano Lett. 11, 262–268. DOI: 10.1021/nl103682s.[WoS][Crossref]
  • 2. Topil’nikov, V.I. & Sosna, M.K. (2012). Modeling paraffin hydrocarbon hydrocracking process. Chem. Technol. Fuels Oils 48(2), 135–142. DOI: 10.1007/s10553-012-0349-9.[WoS][Crossref]
  • 3. Sheldon, R.A. & Bekkum, H. van (2007). Catalytic Hydrogenation and Dehydrogenation. In Fine Chemicals through Heterogeneous Catalysis. Wiley-VCH Verlag GmbH, Weinheim, Germany. DOI: 10.1002/9783527612963.ch08.[Crossref]
  • 4. Blaser, H.U. (2012). Industrial Asymmetric Hydrogenation. In M.L. Crawley and B.M. Trost (Eds.), Applications of Transition Metal Catalysis in Drug Discovery and Development: An Industrial Perspective. John Wiley & Sons, Inc., Hoboken, NJ, USA. DOI: 10.1002/9781118309872.ch8.[Crossref]
  • 5. Kumar, A., Zhang, P., Vincent, A., McCormack, R., Kalyanaraman, R., Cho, H.J. & Seal, S. (2011). Hydrogen selective gas sensor in humid environment based on polymer coated nanostructured-doped tin oxide. Sens. Actuators B: Chem. 155, 884–892. DOI: 10.1016/j.snb.2011.01.065.[WoS][Crossref]
  • 6. Noh, J.-S., Lee, J.M. & Lee, W. (2011). Low-dimensional palladium nanostructures for fast and reliable hydrogen gas detection. Sensors 11, 825851. DOI: 10.3390/s110100825.[WoS][Crossref]
  • 7. Joshi, R.K., Krishnan, S., Yoshimura, M. & Kumar, A. (2009). Pd Nanoparticles and thin films for room temperature hydrogen sensor. Nanoscale Res. Lett. 4, 1191–1196. DOI: 10.1007/s11671-009-9379-6.[Crossref]
  • 8. Yang, F., Kung, S.C., Cheng, M., Hemminger, J.C., Penner, R.M. (2010). Smaller is faster and more sensitive: The effect of wire size on the detection of hydrogen by single palladium nanowires. ACS Nano 4, 5233–5244. DOI: 10.1021/nn101475c.[Crossref][WoS]
  • 9. Zilli, D., Bonelli, P.R. & Cukierman, A.L. (2011). Room temperature hydrogen gas sensor nanocomposite based on Pd-decorated multi-walled carbon nanotubes thin films. Sens. Actuators B: Chem. 157, 169–176. DOI: 10.1016/j.snb.2011.03.045.[Crossref][WoS]
  • 10. Hübert, T., Boon-Brett, L., Black, G. & Banach, U. (2011). Hydrogen sensors – A review. Sens. Actuators B: Chem. 157, 329–352. DOI: 10.1016/j.snb.2011.04.070.[Crossref]
  • 11. Lee, E., Lee, J.M., Koo, J.H., Lee, W., Lee, T. (2010). Hysteresis behavior of electrical resistance in Pd thin films during the process of absorption and desorption of hydrogen gas. Int. J. Hydrogen Energ. 35, 6984–6991. DOI: 10.1016/j. ijhydene.2010.04.051.[Crossref][WoS]
  • 12. Xu, T., Zach, M.P., Xiao, Z.L., Rosenmann, D., Welp, U., Kwok, W.K., Crabtree, G.W. (2005). Self-assembled monolayer-enhanced hydrogen sensing with ultrathin palladium films, Appl. Phys. Lett. 86, 203104. DOI: 10.1063/1.1929075.[Crossref]
  • 13. Yang, F., Taggart, D.K. & Penner, R.M. (2009). Fast, sensitive hydrogen gas detection using single palladium nanowires that resist fracture. Nano Lett. 9, 2177–2182. DOI: 10.1021/nl9008474.[WoS][Crossref]
  • 14. Khanuja, M., Shrestha, S., Mehta, B.R., Kala, S. & Kruis, F.E. (2011). Magnitude and time response of electronic and topographical changes during hydrogen sensing in size selected palladium nanoparticles. J. Appl. Phys. 110, 014318. DOI: 10.1063/1.3603053.[Crossref]
  • 15. Lee, J., Noh, J.S., Lee, S.H., Song, B., Jung, H., Kim, W., Lee, W. (2012). Cracked palladium films on an elastomeric substrate for use as hydrogen sensors. Int. J. Hydrogen Energ. 37, 7934–7939. DOI: 10.1016/j.ijhydene.2012.01.067.[Crossref][WoS]
  • 16. Czerwosz, E., Diduszko, R., Dłużewski, P., Kęczkowska, J., Kozłowski, M., Rymarczyk, J., Suchańska, M. (2008). Properties of Pd nanocrystals prepared by PVD method. Vacuum 82, 372–376. DOI: 10.1016/j.vacuum.2007.08.003.[Crossref]
  • 17. Kamińska, A., Krawczyk, S., Kozłowski, M., Czerwosz, E. & Sobczak, K. (2013). Kinetics of interaction of hydrogen with nanostructured C–Pd films for hydrogen sensing. Sensor Lett. 11, 500–504. DOI: 10.1166/sl.2013.2915.[Crossref][WoS]
  • 18. Ibañez, F.J. & Zamborini, F.P. (2006). Ozone- and thermally activated films of palladium monolayer-protected clusters for chemiresistive hydrogen sensing. Langmuir 22, 9789–9796. DOI: 10.1021/la0617309.[Crossref]
  • 19. Yang, F., Taggart, D.K. & Penner, R.M. (2010). Joule heating a palladium nanowire sensor for accelerated response and recovery to hydrogen gas. Small 6(13), 1422–1429. DOI: 10.1002/smll.201000145.[WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0034
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.