Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 63-68

Article title

Nanocolloidal Ru/MgF2 Catalyst for Hydrogenation of Chloronitrobenzene and Toluene


Title variants

Languages of publication



The use of magnesium fluoride support for ruthenium active phase allowed obtaining new catalysts of high activities in the hydrogenation of toluene and ortho-chloronitrobenzene. Ruthenium colloid catalysts (1 wt.% of Ru) were prepared by impregnation of the support with the earlier produced polyvinylpyrrolidone (PVP)-stabilized ruthenium colloids. The performances of the colloidal catalysts and those obtained by traditional impregnation were tested in the reactions of toluene hydrogenation to methylcyclohexane and selective hydrogenation of ortho-chloronitrobenzene (o-CNB) to ortho-chloroaniline (o-CAN). It was shown that the use of chemical reduction method allows obtaining highly monodisperse ruthenium nanoparticles of 1.6–2.6 nm in size. After reduction in hydrogen at 400oC, the colloidal ruthenium nanoparticles were found to strongly interact with MgF2 surface (SMSI), which decreased the catalyst ability to hydrogen chemisorption, but despite this, the colloid catalysts showed higher activity in o-CNB hydrogenation and higher selectivity to o-CAN than the traditional ones. It is supposed that their higher activity can be a result of high dispersion of Ru in colloid catalysts and the higher selectivity can be a consequence of the lower availability of hydrogen on the surface.









Physical description


26 - 6 - 2014


  • Adam Mickiewicz University, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland
  • Adam Mickiewicz University, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland
  • Adam Mickiewicz University, Faculty of Chemistry, ul. Umultowska 89b, 61-614 Poznań, Poland


  • 1. Wajnert, A., Wojciechowska, M., Pietrowski, M. & Przystajko, W. (2008). Novel supported catalyst for hydrodesulfurization reaction. Catal. Commun. 9, 1493–1496. DOI: 10.1016/j. catcom.2007.12.018.[Crossref]
  • 2. Wojciechowska, M., Pietrowski, M. & Lomnicki, S. (1999). Novel supported catalyst for hydrodesulfurization reaction. Chem. Commun. 463–464. DOI: 10.1039/a807002d.[Crossref]
  • 3. Malinowski, A., Juszczyk, W., Bonarowska, M., Wojciechowska, M., Kowalczyk, Z. & Karpinski, Z. (1999). Supported ruthenium catalysts in hydrodechlorination of CCl2F2 (CFC-12), Reac. Kinet. Cat. Lett. 68, 53–60. DOI: 10.1007/ BF02475487.[Crossref]
  • 4. Malinowski, A., Juszczyk, W., Pielaszek, J., Bonarowska, M., Wojciechowska, M. & Karpinski, Z. (1999). Magnesium fluoride as a catalytic support in hydrodechlorination of CCl2F2 (CFC-12), Chem. Commun. 685–686. DOI: 10.1039/a900731h.[Crossref]
  • 5. Wojciechowska, M., Zieliński, M., Przystajko, W. & Pietrowski, M. (2007). NO decomposition and reduction by C3H6 over transition metal oxides supported on MgF2. Catal. Today. 119(1–4), 44–47. DOI: 10.1016/j.cattod.2006.08.036.[Crossref]
  • 6. Haber, J., Wojciechowska, M., Zieliński, M. & Przystajko, W. (2007). Effect of MgF2 and Al2O3 supports on the structure and catalytic activity of copper-manganese oxide catalysts. Catal. Lett. 113, 46–53. DOI: 10.1007/s10562-006-9010-8.[Crossref][WoS]
  • 7. Wojciechowska, M., Zieliński, M., Malczewska, A., Przystajko, W. & Pietrowski, M. (2006). Copper-cobalt oxide catalysts supported on MgF2 or Al2O3 – their structure and catalytic performance. Appl. Catal. A. 298, 225–231. DOI: 10.1016/j. apcata.2005.10.004.[Crossref]
  • 8. Wojciechowska, M., Malczewska, A., Czajka, B., Zieliński, M. & Goslar, J. (2002). The structure and catalytic activity of the double oxide system Cu-Mn-O/MgF2. Appl. Catal. A. 237, 63–70. DOI: 10.1016/S0926-860X(02)00297-1.[Crossref]
  • 9. Zieliński, M., Wajnert, A. & Wojciechowska, M. (2009). Hydrogenation of benzene over Ni particles supported on MgF2. Pol. J. Environ. Stud. 18(1B), 269–273.
  • 10. Zieliński, M., Pietrowski, M. & Wojciechowska, M. (2009). The Effect of Preparation of Ni/MgF2 Catalysts on the Hydrogenation of Benzene Activity. Pol. J. Environ. Stud. 18(5), 965–969.
  • 11. Zieliński, M., Pietrowski, M. & Wojciechowska, M. (2011). New Promising Iridium Catalyst for Toluene Hydrogenation. ChemCatChem 3, 1653–1658. DOI: 10.1002/cctc.201100061.[Crossref]
  • 12. Zieliński, M. & Wojciechowska, M. (2011). Studies of new magnesium fluoride supported nickel catalysts for toluene hydrogenation. Catal. Today 169, 175–180. DOI: 10.1016/j. cattod.2010.10.060.[Crossref]
  • 13. Zieliński, M. & Wojciechowska, M. (2012). Iridium supported on MgF2-MgO as catalyst for toluene hydrogenation, Catal. Commun. 18, 1–4. DOI: 10.1016/j.catcom.2011.11.006.[Crossref]
  • 14. Pietrowski, M., Zieliński, M. & Wojciechowska, M. (2011). High-Selectivity Hydrogenation of Chloronitrobenzene to Chloroaniline Over Magnesium Fluoride-Supported Bimetallic Ruthenium-Copper Catalysts. ChemCatChem 3, 835–838. DOI: 10.1002/cctc.201100009.[Crossref]
  • 15. Pietrowski, M., Zieliński, M. & Wojciechowska, M. (2009). Selective Reduction of Chloronitrobenzene to Chloroaniline on Ru/MgF2 Catalysts. Catal. Lett. 128(1–2), 31–35. DOI: 10.1007/ s10562-008-9702-3.[WoS][Crossref]
  • 16. Wojciechowska, M., Czajka, B., Pietrowski, M. & Zieliński, M. (2000). MgF2 as a non-conventional catalytic support. Surface and structure characterization. Catal. Lett. 66, 147–155. DOI: 10.1023/A:1019016110664.[Crossref]
  • 17. Wojciechowska, M., Zielinski, M. & Pietrowski, M. (2003). MgF2 as a non-conventional catalyst support. J. Fluorine Chem. 120, 1–11. DOI: 10.1016/S0022-1139(02)00286-5.[Crossref]
  • 18. Fan, G.Y., Zhang, L., Fu, H.Y., Yuan, M.L., Li, R.X., Chen, H. & Li, X.J. (2010). Hydrous zirconia supported iridium nanoparticles: An excellent catalyst for the hydrogenation of haloaromatic nitro compounds, Catal. Commun. 11, 451–455. DOI: 10.1016/j.catcom.2009.11.021.[Crossref][WoS]
  • 19. Zuo, B.J., Wang, Y., Wang, Q.L., Zhang, J.L., Wu, N.Z., Peng, L.D., Gui, L.L., Wang, X.D., Wang, R.M. & Yu, D.P. (2004). An efficient ruthenium catalyst for selective hydrogenation of ortho-chloronitrobenzene prepared via assembling ruthenium and tin oxide nanoparticles. J. Catal. 222, 493–498. DOI: 10.1016/j.jcat.2003.12.007.[Crossref]
  • 20. Zhang, J.L., Wang, Y., Ji, H., Wei, Y.G., Wu, N.Z., Zuo, B.J. & Wang, Q.L. (2005). Magnetic nanocomposite catalysts with high activity and selectivity for selective hydrogenation of ortho-chloronitrobenzene. J. Catal. 229, 114–118. DOI: 10.1016/j.jcat.2004.09.029.[Crossref]
  • 21. Liu, H., Liang, M., Xiao, C., Zheng, N., Feng, X., Liu, Y., Xie, J. & Wang, Y. (2009). An excellent Pd-based nanocomposite catalyst for the selective hydrogenation of para-chloronitrobenzene. J. Mol. Catal. A Chem. 308, 79–86. DOI: 10.1016/j.molcata.2009.03.033.[Crossref][WoS]
  • 22. Jiang, L., Gu, H., Xu, X. & Yan, X. (2009). Selective hydrogenation of o-chloronitrobenzene (o-CNB) over supported Pt and Pd catalysts obtained by laser vaporization deposition of bulk metals. J. Mol. Catal. A Chem. 310, 144–149. DOI: 10.1016/j.molcata.2009.06.009.[WoS][Crossref]
  • 23. Samat, A. & Guglielmetti, R. (2005). Chromogenic Materials, Thermochromic. In Kirk-Othmer Encyclopedia of Chemical Technology, Wiley-VCH.
  • 24. Hropot, M. & Lang, H.-J. (2003). Diuretics, in: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH. DOI: 10.1002/14356007.[Crossref]
  • 25. Siebert, J. & Harke, H.P., (2003). Disinfectants, in: Ullmann’s Encyclopedia of Industrial Chemistry, Wiley-VCH. DOI: 10.1002/14356007.[Crossref]
  • 26. Pietrowski, M. (2012). Recent Developments in Heterogeneous Selective Hydrogenation of Halogenated Nitroaromatic Compounds to Halogenated Anilines. Curr. Org. Synth. 9, 470–487. DOI: 10.2174/1570212700121291794[WoS][Crossref]
  • 27. Weissermel, K. & Arpe, H.J. (1997). in Industrial Organic Chemistry, Third Edition, Wiley-VCH, Weinheim. ISBN 3-52728838-4 Gb.
  • 28. Keane, M.A. & Patterson, P.M. (1996). Compensation behaviour in the hydrogenation of benzene, toluene and oxylene over Ni/Si02. Determination of true activation energies. J. Chem. SOC., Faraday Trans., 92, 1413–1421. DOI: 10.1039/FT9969201413.[Crossref]
  • 29. Gaidai, N.A., Kazantsev, R.V., Nekrasov, N.V., Shulga, Yu.M., Ivleva, I.N. & Kiperman, S.L. (2002). Kinetics of toluene hydrogenation over platinum-titania catalysts in conditions of strong metal-support interaction, React. Kinet. Catal. Lett., 75, 55–61.
  • 30. Barrio, V.L., Arias, P.L., Cambra, J.F., Güemez, M.B., Pawelec, B. & Fierro, J.L.G. (2003). Aromatics hydrogenation on silica–alumina supported palladium–nickel catalysts, Appl. Catal. A. 242, 17–30. DOI: 10.1016/S0926-860X(02)00489-1.[Crossref]
  • 31. Chen, P., Fan, B., Song, M., Jin, C. & Li, R. (2006). Effect of Substituents of Ru-Schiff Base/Y Catalysts on Hydrogenation Activity, Petrochemical Technology 35 (8), 740–744. www. platinum.matthey.com
  • 32. Tu, W.X. & Liu, H.F. (2000). Rapid synthesis of nanoscale colloidal metal clusters by microwave irradiation. J. Mater. Chem.10, 2207–2211. DOI: 10.1039/b002232m.[Crossref]
  • 33. Bergeret, G. & Gallezot, P. (1997). Handbook of Heterogeneous Catalysis, G. Ertl, H. Knözinger, J. Weitkamp, Wiley Weinheim.
  • 34. Wojciechowska, M., Łomnicki, S. & Pietrowski, M., (1997). The Effect of Catalyst Preparation on the Performace of Magnesium Fluoride Supported Ruthenium, Catal. Lett., 46, 63–69. DOI: 10.1023/A:1019033527231.[Crossref]
  • 35. Pietrowski, M., Wojciechowska, M., Goslar, J. & Zieliński, M. (2003). Interaction of Ru3(CO)12 with magnesium fluoride surface, Mol. Phys. Reports, 37, 105–111.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.