Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 36-42

Article title

Use of MgO to Promote the Oxyethylation Reaction of Lauryl Alcohol

Content

Title variants

Languages of publication

EN

Abstracts

EN
Synthesis of magnesium hydroxide was performed by the precipitation method with the use of magnesium sulfate and sodium hydroxide. The infiuence of temperature and ratio of reagents was studied. Magnesium hydroxides, and the magnesium oxides obtained from them by thermal decomposition, were analyzed to determine their bulk density, polydispersity and particle size. The magnesium oxide with the largest surface area was tested as a catalyst in the oxyethylation of lauryl alcohol, and shown to be selective but poorly reactive in comparison with commercially available catalysts. Further studies are needed to improve its reactivity.

Publisher

Year

Volume

16

Issue

2

Pages

36-42

Physical description

Dates

online
26 - 6 - 2014

Contributors

  • Poznan University of Technology, Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
author
  • Institute of Heavy Organic Synthesis “BLACHOWNIA”, Energetyków 9, 47-225 Kędzierzyn-Koźle, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Life Science, Institute of Biosystems Engineering, Faculty of Agriculture and Bioengineering, Wojska Polskiego 50, 60-637 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, Faculty of Chemical Technology, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland

References

  • 1. Dong, C., Cairney, J., Sun, Q., Maddan, O.L., He, G. & Deng, Y. (2010). Investigation of Mg(OH)2 nanoparticles as an antibacterial agent, J. Nanopart. Res. 12, 2101–2109. DOI: 10.1007/s11051-009-9769-9.[Crossref]
  • 2. Chen, X., Yu, J., Guo, S., Lu, S., Luo, Z. & He, M. (2009). Effects of magnesium hydroxide and its surface modification on crystallization and rheological behaviors of polypropylene, Polym. Compos. 30, 941–947. DOI: 10.1002/pc.20638.[Crossref]
  • 3. Xiang-jian, K., Shu-hei, L. & Jiang-ging, Z. (2008). Flame retardancy effects of surface-modified metal hydroxides on linear low density polyethylene, J. Cent. South Univ. Technol. 15, 779–785. DOI: 10.1007/s11771-008-0144-2.[Crossref]
  • 4. Khor, S.F., Talib, Z.A., Daud, W.M., Sidek, H.A.A. & Ng, B.H. (2009). Effects of MgO on dielectric properties and electrical conductivity of ternary zinc magnesium phosphate glasses, J. Non-Cryst. Solids 355, 2533–2539. DOI: 10.1016/j. jnoncrysol.2009.09.010.[Crossref]
  • 5. Lei, T., Ouyang, C., Tang, W., Li, L.F. & Zhou, L.S. (2010). Preparation of MgO coatings on magnesium alloys for corrosion protection, Surface Coat. Technol. 204, 3798–3803. DOI: 10.1016/j.surfcoat.2010.04.060.[Crossref]
  • 6. Lei, H., Dianqing, L., Yanjun, L., Evans, D.G. & Xue, D. (2005). Infiuence of nano-MgO particle size on bactericidal action against Bacillus Subtilis, Var. Niger, Chin. Sci. Bull. 50, 514–519. DOI: 10.1360/04wb0075.[Crossref]
  • 7. Climent, M.J., Corma, A., Iborra, S. & Mifsud, M. (2007). MgO nanoparticle-based multifunctional catalysts in the cascade reaction allows the green synthesis of anti-inflammatory agents, J. Catal. 247, 223–230. DOI: 10.1016/j.jcat.2007.02.003.[Crossref][WoS]
  • 8. Kumar, D., Reddy, V.B., Mishra, B.G., Rana, R.K., Nadagouda, M.N. & Varma, R.S. (2007). Nanosized magnesium oxide as catalyst for the rapid and green synthesis of substituted 2-amino-2-chromenes, Tetrahedron 63, 3093–3097. DOI: 10.1016/j.tet.2007.02.019.[WoS]
  • 9. Seifi, M. & Sheibani, H. (2008). High surface area MgO as a highly effective heterogeneous base catalyst for three-component synthesis of tetrahydrobenzopyran and 3,4-dihydropyrano[c]chromene derivatives in aqueous media, Catal. Lett. 126, 275–279. DOI: 10.1007/s1056-008-9603-5.[WoS][Crossref]
  • 10. Polshettiwar, V., Baruwati, B. & Varma, R.S. (2009). Self-assembly of metal oxides into three-dimensional nanostructures: Synthesis and application in catalysis, ACS Nano 3, 728–736. DOI: 10.1021/nn800903p.[Crossref][WoS]
  • 11. Coluccia, S. & Tench, A.J. (1980). Proceedings of the 7th International Congress on Catalysis, Tokyo, 1157.
  • 12. Alejski, K., Emmons, M., Lukosek, M. & Miesiąc, I. (2010). Oxyethylation of fatty acid methyl esters using heterogeneous catalyst. Process modeling and experimental evaluation, Inż. Aparatura Chem. 49, 17–18 (in Polish).
  • 13. Hreczuch, W. & Szymanowski, J. (2007). Sposób oksyetylenowania estrów, Polish patent 194888.
  • 14. Hama, I., Sasamoto, H. & Okamoto, T. (1997). Effects of ethoxylate structure on surfactant properties of ethoxylated fatty methyl esters, Am. Oil Chem. Soc. 74, 823–827. DOI: 10.1007/s11746-997-0225-7.[Crossref]
  • 15. Aramendía, M.A., Borau, V., Jiménez, C., Marinas, J.M., Ruiz, J.R. & Urbano, F.J. (2003). Infiuence of the preparation method on the structural and surface properties of various magnesium oxides and their catalytic activity in the Meerwein–Ponndorf–Verley reaction, Appl. Catal. A: General 244, 207–215. DOI: 10.1016/S0926-860X(02)00213-2.[Crossref]
  • 16. Gulková, D., Šolcová, O. & Zdražil, M. (2004). Preparation of MgO catalytic support in shaped mesoporous high surface area form, Micropor. Mesopor. Mat. 76, 137–149. DOI: 10.1016/j.micromeso.2004.07.039.[Crossref]
  • 17. Raths, H.C., Breuer, W., Friedrich, K. & Hermann, K. (1994). Use of hydrophobized hydrotalcites as catalysts for ethoxylation or propoxylation, US patent 5292910.
  • 18. Wolf, G., Burkhart, B., Lauth, G., Trapp, H. & Oftring, A. (1998). Preparation of alkoxylation products in the presence of mixed hydroxides modified with additives, US patent 5741947.
  • 19. Breuer, W. & Raths, H.C. (1994). Hydrophobicized double layer hydroxide compounds, US patent 5326 891.
  • 20. Okamoto, T., Uemura, S. & Hama, I. (2003). Alkoxylation catalyst and method for producing the same, and method for producing alkylene oxide adduct using the catalyst, US patent 6504061.
  • 21. Wang, B.H., Zhang, W.B., Zhang, W., Yu, C.Y., Wang, G., Huang, L.X. & Mujumdar, A.S. (2007). Infiuence of drying processes on agglomeration and grain diameters of magnesium oxide nanoparticles, Dry. Technol. 25, 715–721. DOI: 10.1080/07373930701291108.[WoS][Crossref]
  • 22. Yun, L., Wang, B.H., Jing, D., Lv, X., Yu, C.Y., Wang, G., Huang, L.X. & Mujumdar, A.S. (2009). Drying kinetics of magnesium hydroxide of different morphological micro nanostructures, Dry. Technol. 27, 523–528. DOI: 10.1080/07373930802715252.[Crossref]
  • 23. Melgunov, M.S., Fenelonov, V.B., Melgunova, E.A., Bedilo, A.F.K. & Klaubunde, J. (2003). Textural changes during topochemical decomposition of nanocrystalline Mg(OH)2 to MgO, J. Phys. Chem. 107, 2427–2434. DOI: 10.1021/jp021474i.[Crossref]
  • 24. Pilarska, A., Markiewicz, E., Ciesielczyk, F. & Jesionowski, T. (2011). The infiuence of spray drying on the dispersive and physicochemical properties of magnesium oxide, Dry. Technol. 29, 1210–1218. DOI: 10.1080/07373937.2011.579698.[WoS][Crossref]
  • 25. Alvarado, E., Torres-Martinez, L.M., Fuentes, A.F. & Quintana, P. (2000). Preparation and characterization of MgO powders obtained from different magnesium salts and the mineral dolomite, Polyhedron 19 (2000) 2345–2351. DOI: 10.1016/S0277-5387(00)00570-2.[Crossref]
  • 26. Hattori, H. (1995). Heterogeneous basic catalysis, Chem. Rev. 95, 537–558.
  • 27. Pilarska, A., Paukszta, D., Ciesielczyk, F. & Jesionowski, T. (2010). Physico-chemical and dispersive characterisation of magnesium oxides precipitated from the Mg(NO3)2 and MgSO4 solutions, Polish J. Chem. Tech. 12, 52–56. DOI: 10.2478/ v10026-010-0018-x.[Crossref]
  • 28. Pilarska, A., Wysokowski, M., Markiewicz, E. & Jesionowski, T. (2013). Synthesis of magnesium hydroxide and its calcinates by precipitation method with the use of magnesium sulfate and poly(ethylene glycols), Powder Technol. 235, 148–157. DOI: 10.1016/j.powtec.2012.10.008.[Crossref][WoS]
  • 29. Białowąs, E. & Szymanowski, J. (2004). Catalysts for oxyethylation of alcohols and fatty acid methyl esters, Ind. Eng. Chem. Res. 43, 6267–6280. DOI: 10.1021/ie049898h.[Crossref]
  • 30. Alejski, K., Białowąs, E., Hreczuch, W., Trathnigg, B. & Szymanowski, J. (2003). Oxyethylation of fatty acid methyl esters. Molar ratio and temperature effects. Pressure drop modelling, Ind. Eng. Chem. Res. 42, 2924–2933. DOI: 10.1021/ ie020471p.[Crossref]
  • 31. Hreczuch, W. & Szymanowski, J. (1996). Synthesis of surfactants with narrow – range distribution of the polyoxyethylene chain, J. Am. Oil. Chem. Soc. 73, 73–78. DOI: 10.1007/ BF02523451.[Crossref]
  • 32. Kim, D., Huang, Ch., Lee, H., Han, I. & Kang, S. (2003). Hydrotalcite-type catalysts for narrow-range oxyethylation of 1-dodecanol using ethyleneoxide, Appl. Catal. A: General 249 229–240. DOI: 10.1016/S0926-860X(03)00297-7.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0027
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.