Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 31-35

Article title

Application of Response Surface Methodology for Optimization of Permeabilization Process of Baker’s Yeast

Content

Title variants

Languages of publication

EN

Abstracts

EN
Permeabilization was used for the purpose of transforming the cells of microorganisms into biocatalysts with an enhanced enzyme activity. Baker’s yeast cells were permeabilized with various organic solvents. A high degree of catalase activity was observed upon permeabilization with acetone, chloroform, isopropyl alcohol and ethyl acetate. Response surface methodology was used to model the effect of concentration of isopropyl alcohol, temperature and treatment time on the permeabilization of baker’s yeast cells to maximize the decomposition of H2O2. The optimum operating conditions for permeabilization were observed at 53.7% concentration of isopropyl alcohol, treatment time of 40 min and temperature of 15.6oC. A maximum value of catalase activity was found to be 6.188 U/g wet wt. and was ca. 60 times higher than the catalytic activity of yeast not treated by the permeabilization process.

Publisher

Year

Volume

16

Issue

2

Pages

31-35

Physical description

Dates

online
26 - 6 - 2014

Contributors

  • University of Technology and Life Sciences in Bydgoszcz, Faculty of Chemical Technology and Engineering, Department of Chemical and Biochemical Engineering, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland
author
  • University of Technology and Life Sciences in Bydgoszcz, Faculty of Chemical Technology and Engineering, Department of Chemical and Biochemical Engineering, ul. Seminaryjna 3, 85-326 Bydgoszcz, Poland

References

  • 1. Eberhard, A.M., Pedroni, V., Volpe, M. & Ferreira, M.L. (2004). Immobilization of catalase from Aspergillus niger on inorganic and biopolymeric supports for H2O2 decomposition. Appl. Catal. B: Enviro. 47, 153–163. DOI: 10.1016/j. apcatb.2003.08.007.[Crossref]
  • 2. Tarhan, L. (1995). Use of immobilized catalase to remove H2O2 used in the sterilisation of milk. Process Biochem. 30, 623–8. DOI: 10.1016/0032-9592(94)00066-2.[Crossref]
  • 3. Venkateshwaran, G., Somashekar, D., Prakash, M.H., Agrawal, R., Basappa, S.C. & Joseph, R. (1999). Production and utilization of catalase using Saccharomyces cerevisiae. Process Biochem. 34, 187–191. DOI: 10.1016/S0032-9592(98)00087-9.[Crossref]
  • 4. Sirbu, T. (2011). The searching of active catalase producers among the microscopic fungi. An. U. O. Fasc. Biol. 2, 164–167.
  • 5. Choi, M.M.F. & Yiu, T.P. (2004). Immobilization of beef liver catalase on eggshell membrane for fabrication of hydrogen peroxide biosensor. Enzyme Microb. Tech. 34, 41–47. DOI: 10.1016/j.enzmictec.2003.08.005.[Crossref]
  • 6. Yu, M.A., Wei, Y.M., Zhao, L., Jiang, L., Zhu, X.B. & Qi, W. (2007). Bioconversion of ethyl 4-chloro-3-oxobutanoate by permeabilized fresh brewer’s yeast cells in the presence of allyl bromide. J. Ind. Microbiol. Biot. 34, 151–156. DOI: 10.1007/s10295-006-0179-z.[WoS][Crossref]
  • 7. Malik, M., Ganguli, A. & Ghosh, M. (2012). Modeling of permeabilization process in Pseudomonas putida G7 for enhanced limonin bioconversion. Appl Microbiol. Biot. 95, 223–231. DOI: 10.1007/s00253-012-3880-z.
  • 8. Scherrer, R., Louden, L. & Gerhardt, P. (1974). Porosity of the yeast cell wall and membrane. J. Bacteriol. 118, 534–540.
  • 9. Zlotnik, H., Fernandez, M.P., Bowers, B. & Cabib, E. (1984). Saccharomyces cerevisiae mannoproteins form an external cell wall layer that determines wall porosity. J. Bacteriol. 159, 1018–1026.
  • 10. Joshi, M.S., Gowda, L.R., Katwa, L.C. & Bhat, S.G. (1989). Permeabilization of yeast cells (Kluyveromyces fragilis) to lactose by digiton. Enzyme Microb. Technol. 11, 439–443. DOI: 10.1016/0141-0229(89)90140-3.[Crossref]
  • 11. Gowda, L.R., Bachhawat, N., & Santhoor, G.B. (1991). Permeabilization of bakers’ yeast by cetyltrimethylammonium bromide for intracellular enzyme catalysis. Enzyme Microb. Technol. 13, 154–157. DOI: 10.1016/0141-0229(91)90172-7.[Crossref]
  • 12. Sekhar, S., Bhat, N. & Bhat, S.G. (1999). Preparation of detergent permeabilized bakers’ yeast whole cell catalase. Process Biochem. 34, 349–354. DOI: 10.1016/S00329592(98)00105-8.[Crossref]
  • 13. Vrsalovic Presecki, A., Zelic, B. & Vasic-Racki, D. (2007). Comparison of the L-malic acid production by isolated fumarase and fumarase in permeabilized baker’s yeast cells. Enzyme Microb. Technol. 41, 605–612. DOI: 10.1016/j. enzmictec.2007.05.007.[Crossref]
  • 14. Abraham, J. & Bhat, S.G. (2008). Permeabilization of baker’s yeast with N-lauroyl sarcosine. J. Ind. Microbiol. Biot. 35, 799–804. DOI: 10.1007/s10295-008-0350-9.[Crossref]
  • 15. Kaur, G., Panesar, P.S., Bera, M.B. & Kumar, H. (2009). Hydrolysis of whey lactose using CTAB-permeabilized yeast cells. Bioproc. Biosyst. Eng. 32, 63–67. DOI: 10.1007/s00449008-0221-9.[Crossref][WoS]
  • 16. Mutanda, T., Wilhelmi, B.S. & Whiteley, C.G. (2008). Response surface methodology: Synthesis of inulooligosaccharides with an endoinulinase from Aspergillus niger. Enzyme Microb. Technol. 43, 362–368. DOI: 10.1016/j.enzmictec.2008.06.005.[WoS][Crossref]
  • 17. Panesar, P.S. (2008). Application of response surface methodology in the permeabilization of yeast cells for lactose hydrolysis. Biochem. Eng. J. 39, 91–96. DOI: 10.1016/j. bej.2007.08.017.[WoS][Crossref]
  • 18. Khataee, A.R. (2009). Application of central composite design for the optimization of photodestruction of a textile dye using UV/S2O82– process. Pol. J. Chem. Technol. 11(4), 38–45. DOI:10.2478/v10026-009-0041-y.[Crossref]
  • 19. Balasubramanian, A. & Venkatesan, S. (2012). Optimization of process parameters using response surface methodology for the removal of phenol by emulsion liquid membrane. Pol. J. Chem. Technol. 14(1), 46–49. DOI: 10.2478/v10026-012-0058-5.[Crossref]
  • 20. Montgomery, D.C. (2001). Design and analysis of experiments. New York, NY, USA: Wiley.
  • 21. Delrio, L.A., Gomezortega, M., Leallopez, A. & Lopezgorge, J. (1977). More sensitive modification of catalase assay with clark oxygen-electrode-application to kinetic study of pea leaf enzyme. Anal. Biochem. 80, 409–15. DOI: 10.1016/00032697(77)90662-5.[Crossref]
  • 22. Olczak, I., Grubecki, I. & Wójcik, M. (2010). Optimization of permeabilization process of Saccharomyces cerevisiae yeast by methanol. Inż. Ap. Chem. 49(2), 89–90.
  • 23. Akhnazarova, S. & Kafarov, V. (1982). Experiment optimization in chemistry and chemical engineering. Moscow, Russia: Mir Publications.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0026
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.