Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 16-26

Article title

Comparison of Hydrolytic Resistance of Polyurethanes and Poly(Urethanemethacrylate) Copolymers in Terms of their Use as Polymer Coatings in Contact with the Physiological Liquid

Content

Title variants

Languages of publication

EN

Abstracts

EN
PU elastomers were synthesized using MDI, PTMO, butane-1,4-diol or 2,2,3,3-tetrafiuorobutane-1,4-diol. Using the same diisocyanate and polyether reagents urethane segments were prepared, to be inserted in the poly(urethane-methacrylate) copolymers. Bromourethane or tetraphenylethane-urethane macroinitiators were used as transitional products reacting with MMA according to the ARGET ATRP. 1H and 13C NMR spectral methods, as well as DSC and TGA thermal methods, were employed to confirm chemical structures of synthesised elastomers and copolymers. To investigate the possibility of using synthesized polymers as biomaterials a research on keeping them in physiological liquid at 37°C was performed. A loss in weight and ability to sorption of water was determined and by using GPC the molecular weight changes were compared. Additionally, changes in the thermal properties of the samples after exposure in physiological liquid were documented using both the TGA and DSC methods. The studies of surface properties (confocal microscopy and SFE) of the obtained polymers were performed. The structure of the polymer chains was defined by NMR. Possible reasons of hydrolysis were discussed, stating that new copolymers are more resistant and polar biomaterials can be less interesting than elastomers.

Keywords

EN

Publisher

Year

Volume

16

Issue

2

Pages

16-26

Physical description

Dates

online
26 - 6 - 2014

Contributors

author
  • Rzeszów University of Technology, Department of Polymer Science, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • Rzeszów University of Technology, Department of Polymer Science, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
author
  • Rzeszów University of Technology, Department of Polymer Science, Faculty of Chemistry, al. Powstańców Warszawy 6, 35-959 Rzeszów, Poland
  • AGH University of Science and Technology, Department of Biomaterials, Faculty of Materials Science and Ceramics, al. Mickiewicza 30, 30-059 Kraków, Poland

References

  • 1. Król, P. (2008). Linear Polyurethans. Synthesis methods, chemical structures, properties and applications. Boston, USA: NV. Leiden, The Netherlands Leiden.
  • 2. Yang, Q. & Ye, L. (2013). Mechanical and thermal properties of polyurethane elastomers synthesized with toluene diisocyanate trimer. J. Polym. Sci. Part B: Polym. Phys. 52, 138–154. DOI: 10.1080/00222348.2012.695631.[Crossref][WoS]
  • 3. Ahmad, N., Khan, M.B., Ma, X., Ul-Haq, N. & IhtashamUr-Rehman. (2012). Dynamic mechanical characterization of the crosslinked and chain-extended HTPB based polyurethanes. Polym. Compos. 20, 683–692.
  • 4. Liu, C., Zhang, Z., Liu, K.L., Ni, X. & Li, J. (2013). Biodegradable thermogelling poly(ester urethane)s consisting of poly(1,4-butylene adipate), poly(ethylene glycol), and poly(propylene glycol). Soft Matter. 9, 787–794. DOI: 10.1039/ C2SM26719E.[Crossref][WoS]
  • 5. Yamamaoto, K., Kimura, T., Nam, K., Funamoto, S., Ito, Y., Shiba, K., Katoh, A., Shimizu, S., Kurita, K., Hihami, T., Masuzawa, T. & Kishida, A. (2011). Synthetic polymer-tissue adhesion using an ultrasonic scalpel. Surg. Endos. Other Unterventional Techniques 25, 1270–1275. DOI: 10.1007/s00464010-1357-7.[Crossref]
  • 6. Ma, Z., Hong, Y., Nelson, D.M., Pichamuthu, J.E., Lee-son, C.E. & Wagner, W.R. (2011). Biodegradable polyurethane ureas with variable polyester or polycarbonate soft segments: Effects of crystallinity, molecular weight, and composition on mechanical properties. Biomacromol. 12, 3265–3264. DOI: 10.1021/bm2007168.[Crossref]
  • 7. Page, J.M., Prieto, E.M., Dumas, J.E., Zienkiewicz, K.J., Wenke, J.C., Brown-Baer, P. & Guelcher, S.A. (2012). Biocompatibility and chemical reaction kinetics of injectable, settable polyurethane/allograft bone biocomposites. Acta Biomater. 8, 4405–4416. DOI: dx.doi.org/10.1016/j.actbio.2012.07.037.[Crossref][WoS]
  • 8. Gogolewski, S. (1989). Selected topics in biomedical polyurethanes. A review. Coll. Polym. Sci. 267, 757–185. DOI: 10.1007/BF01410115.[Crossref]
  • 9. Król, P. & Byczyński, Ł. (2008). Infiuence of chemical structure on the values of free surface energy oft he coatings made of poly(urethane-siloxane) copolymers. Polimery 53, 808–816. [in Polish].
  • 10. Seyedmehdi, S.A., Zhang, H. & Zhu, J. (2013). Fabrication of superhydrophobic coatings based on nanoparticles and fluoropolyurethane. J. Appl. Polym. Sci. 128, 4136-4140. DOI: 10.1002/app.38418.[Crossref]
  • 11. Król, B., Król, P., Pielichowska, K. & Pikus, S. (2011). Comparison of phase structures and surface free energy values for the coatings synthesised from linear polyurethanes and from waterborne polyurethane cationomers. Coll. Polym. Sci. 289, 757–1767. DOI: 10.1007/s00396-011-2515-8.[Crossref]
  • 12. Wang, L.F. & Wie, Y.H. (2005). Effect of soft segment length on properties of fiuorinated polyurethanes. Coll. Surf. B: Biointerf. 41, 249–255. DOI: dx.doi.org/10.1016/j. colsurfb.2004.12.014.[Crossref]
  • 13. Pereira, I.H.L., Ayres, E., Patricio, P.S., Góes, A.M., Gomide, V.S., Junior, E.P. & Oréfice, R.L. (2010). Photopolymerizable and injectable polyurethanes for biomedical applications: Synthesis and biocompatibility. Acta Biomater. 6, 3056–3066. DOI: dx.doi.org/10.1016/j.actbio.2010.02.036.[WoS][Crossref]
  • 14. Król, P. & Chmielarz, P. (2013). Synthesis of PMMAb-PU-b-PMMA tri-block copolymers through ARGET ATRP in the presence of air. Express Polym. Lett. 7, 249–260. DOI: 10.3144/expresspolymlett.2013.23.[Crossref][WoS]
  • 15. Sharifpoor, S., Labow, R. & Santerre, S.P.J. (2009). Synthesis and characterization of degradable polar hydrophobic ionic polyurethane scaffolds for vascular tissue engineering applications. Biomacromol. 10, 2729–2739. DOI: 10.1021/bm9004194.[Crossref]
  • 16. Król, P. & Chmielarz, P. (2011). Controlled radical polymerization (CRP) methods in the synthesis of polyurethane copolymers. Polimery (in Polish) 56, 530–540.
  • 17. Verma, H. & Tharanikkarasu, K. (2008). Novel telechelic 2-methyl-2-bromopropionate terminated polyurethane macro-initiator for the synthesis of ABA type tri-block copolymers through atom transfer radical polymerization of methyl methacrylate. Polym. J. 40, 867–874. DOI: 10.1295/polymj.PJ2007236.[Crossref]
  • 18. Verma, H. & Tharanikkarasu, K. (2010). Atom transfer radical polymerization of methyl methacrylate using telechelic tribromo terminated polyurethane macroinitiator. J. Macromol. Sci. Part A: Pure Appl. Chem. 47, 407–415. DOI: 10.1080/10601321003699671.[Crossref][WoS]
  • 19. Szelest-Lewandowska, A., Masiulanis, B., Klocke, A., Glasmacher, B. & Glasmacher, B. (2003). Synthesis, physical properties and preliminary investigation of hemocompatibility of polyurethanes from aliphatic resources with castor oil participation. J. Biomater. Appl. 17, 221–236. DOI: 10.1177/0885328203017003480.[Crossref]
  • 20. Mondal, S. & Martin, D. (2012). Hydrolytic degradation of segmented polyurethane copolymers for biomedical applications. Polym. Degrad. Stab. 97, 1553–1561. DOI: 10.1016/j. polymdegradstab.2012.04.008.[Crossref]
  • 21. Stodolak, E., Paluszkiewicz, C., Błażewicz, M. & Kotela, I. (2009). In vitro biofilms formation on polymer matrix composites. J. Mol. Struct. 924, 562–566. DOI: dx.doi.org/10.1016/j. molstruc.2009.01.017.[Crossref]
  • 22. Król, P. & Chmielarz, P. (2014). Synthesis of PMMAb-PU-b-PMMA tri-block copolymers through ARGET ATRP of methyl methacrylate using tetraphenylethane-urethane macroiniferter in the presence of air. Polimery. (in Polish) 59, 279–292. DOI: dx.doi.org/10.14314/polimery.2014.279.[Crossref]
  • 23. Król, P. & Pilch-Pitera, B. (2003). A study on the synthesis of urethane oligomers. Eur. Polym. J. 39, 1229–1241. DOI: dx.doi.org/10.1016/S0014-3057(02)00375-0.[Crossref]
  • 24. Owens, D.K., Wendt, R.C. (1969). Estimation of the surface free energy of polymers. J. Appl. Polymer Sci. 13, 1741–1747. DOI: 10.1002/app.1969.070130815.[Crossref]
  • 25. Laib, S., Krieg, A., Rankl, M. & Seeger, S. (2006). Supercritical angle fluorescence biosensor for the detection of molecular interactions on cellulose-modified glass surfaces. Appl. Surf. Sci. 252, 7788–7793. DOI: dx.doi.org/10.1016/j. apsusc.2005.09.017.[Crossref]
  • 26. Zisman, W.A. (1964). Relation of the equilibrium contact angle to liquid and solid constitution. (Eds.) In F.M. Fowkes. Contact Angle, Wettability, and Adhesion. (pp. 1–51). Washington: American Chemical Society. DOI: 10.1021/ba-1964-0043.ch001.[Crossref]
  • 27. Król, P., Lechowicz, J.B. & Król, B. (2013). Modelling the surface free energy parameters of polyurethane coats – part 1. Solvent-based coats obtained from linear polyurethane elastomers. Coll. Polym. Sci. 291, 1031–1047. DOI: 10.1007/ s00396-012-2826-4.[Crossref]
  • 28. Król, P., Lechowicz, J.B. & Król, B. (2013). Modelling the surface free energy parameters of polyurethane coats – part 2. Waterborne coats obtained from cationomer polyurethanes. Coll. Polym. Sci., sent to the Editor.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2014-0024
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.