Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 5-11

Article title

Morphological Evaluation of Variously Intercalated Pre-baked Clay


Title variants

Languages of publication



The use of porous materials is enjoying tremendous popularity and attention of the advance scientific communities due to their excellent adsorptive and catalytic activities. Clays are one of the most important candidates in the porous community which shows the above mentioned activities after modifing with a different intercalating agent. The paper is focused on the infiuence of some inorganic intercalating agents (NaOH) on the morphology of the variously intercalated clay samples. The alkali metal was used as the inorganic intercalating agent. The effect of intercalation temperature, intercalation agent concentration and intercalation time on the pre-baked clay morphology were also part of the study. Scanning electron microscopy (SEM) study was performed to evaluate the morphological changes of the resultant intercalates. Different morphological properties were improved significantly in the case of the inorganically modified clay samples. Thus, such intercalations are suggested to be effective if the clays under study are to be used for different industrial process at elevated conditions.









Physical description


26 - 6 - 2014


  • University of Peshawar, Institute of Chemical Sciences, KPK, Pakistan
  • University of Peshawar, Institute of Chemical Sciences, KPK, Pakistan


  • 1. Thomas, K.M. (2007). Hydrogen adsorption and storage on porous materials. Catal Today. 120, 389–398 01/2007; DOI: 10.1016/j.cattod.2006.09.015.[Crossref]
  • 2. Zhao, D. & Wang, Y. (2007). In: Introduction to Zeolite Science and Practice (Eds: J. Cejka, H. van Bekkum, A. Corma, F. Schüth), Stud. Surf. Sci. Catal. 168, Chapter 8, Elsevier, Amsterdam.
  • 3. Kleitz, F. (2008). Handbook of Heterogeneus Catalysis (Eds: G. Ertl, H. Knoetzinger, F. Schueth, J. Weitkamp), Wiley-VCH Verlag GmbH & Co KgaA, Weinheim.
  • 4. Roth, W.J. & Vartuli, J.C. (2005). Progress and Prospects, Stud Surf Sci Catal (Eds: J. Cejka, H. van Bekkum) 91.
  • 5. Hartmann, M. (2005). Adsorption of vitamin E on mesoporous carbon molecular sieves. Chem. Mater. 17, 829–833. DOI: 10.1021/cm048564f.[Crossref]
  • 6. Hartmann, M. & Jung, D. (2010). Biocatalysis with enzymes immobilized on mesoporous hosts: the status quo and future trends. J. Mater. Chem. 20, 844. DOI: 10.1039/B907869J.[WoS][Crossref]
  • 7. Mumin, M.A., Khan, M.M.R., Akhter, K.F. & Uddin, M.J. (2007). Potentiality of open burnt clay as an adsorbent for the removal of Congo red from aqueous solution. Int. J. Environ. Sci. Tech. 4 (4), 525–532.[WoS][Crossref]
  • 8. Krishna, B.S., Murty, D.S.R. & Jai Prakash, B.S. (2001). Surfactant-modified clay as adsorbent for chromate. Appl Clay Sci. 20 (1–2), 65–71. DOI.10.1016/S0169-1317(01)00039-4.[Crossref]
  • 9. Karthikeyan, G., Pius, A. & Alagumuthu, G. (2005). Fluoride adsorption studies of montmorillonite clay. Indian J. Chem. Techn. 12(3), 263–272.
  • 10. Lang, F. & Kaupenjohann, M. (2002). Immobilisation of molybdate by iron oxides: Effect of organic coatings. Geoderma. 1910, 1–16.
  • 11. Kaiser, K. & Guggenberger, G. (2003). Mineral surface and soil organic matter. Eur. J. Soil Sci. 54,1–18. DOI: 10.1046/ j.1365-2389.2003.00544.[Crossref]
  • 12. Usman, M.A., Ekwueme, V.I., Alaje, T.O. & Mohammed, A.O. (2012). Characterization, Acid Activation, and Bleaching Performance of Ibeshe Clay, Lagos, Nigeria. ISRN Ceramics. Article ID 658508, 5 pages, DOI: 10.5402/2012/658508.[Crossref]
  • 13. Panda, A.K., Mishra, B.G., Mishra, D.K. & Singh, R.K. (2010). Effect of sulphuric acid treatment on the physicochemicalcharacteristics of kaolin clay. Colloids Surf., A. 363, 98–104.
  • 14. Asheh, S., Banat, F. & Abu-Aitah, L. (2003). Sep. Pur. Tech., 33, 10.
  • 15. Chaisena, A. & Rangsriwatananon, K. (2004). Effects of thermal and acid treatments on some phisico-chemical properties of lampang diatomitr. J. Sci. Technol. 11, 289.
  • 16. Sing, K.S.W., Everett, D.H., Haul, R.A.W., Mouscou, L., Pierotti, R.A., Rouquerol, J. & Siemieniewska, T. (1985). Pure Appl. Chem. 57, 603. DOI:10.1351/pac198557040603.[Crossref]
  • 17. Rouquerol, F., Rouquerol, J. & Sing, K. (1999). Adsorption by Powders and Porous Solids, Academic Press, London.
  • 18. Lowell, S., Shields, J., Thomas, M.A. & Thommes, M. (2004). Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Springer, The Netherlands.
  • 19. Gregg, S.J. & Sing, K.S.W. (1982). Adsorption, Surface Area and Porosity, Academic Press, London.
  • 20. Ajemba, R.O. & Onukwuli, O.D. (2012). Dissolution kinetics and mechanisms of reaction of Udi clay in nitric acid solution. AJSIR. DOI: 10.5251/ajsir.2012.[Crossref]
  • 21. Tsai, WT., Hsien, K.J., & Lai, C.W. (2004). Chemical Activation of Spent Diatomaceous Earth by Alkaline Etching in the Preparation of Mesoporous Adsorbents. Ind. Eng. Chem. Res. 43, 7513–7520.[Crossref]
  • 22. Saidi, A., Shamanian, M., Barati, M. & Azari, K. (2004). Hyperactivation of Bentonite in Pelletizing Process. International Journal of ISSI 1(1), 38–41.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.