Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 2 | 1-4
Article title

Separation and Concentration of Succinic Adic from Multicomponent Aqueous Solutions by Nanofiltration Technique

Title variants
Languages of publication
This paper applies the determined suitability of nanofiltration (NF) membrane separation for selective isolation and concentration of succinic acid from aqueous solutions which are post-fermentation multicomponent fluids. The study analyzed the influence of concentration and the pH of the separated solutions on the efficiency and selectivity of NF process that runs in a module equipped with a ceramic membrane. Moreover, the effect of applied trans-membrane pressure on the retention of succinic acid and sodium succinate has been studied. The investigations have shown that in the used NF module the retention of succinic acid salt is equal almost 50% in the case of a three-component model solution, although the degree of retention depends on both the transmembrane pressure and the initial concentration of separated salt.
Physical description
26 - 6 - 2014
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Institute of Chemical Technology and Engineering, pl. M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • 1. Chmielewski, Ł. & Rodkiewicz, W. (2008, December). International Biofuels Market Status and Prospects, Foundation Programmes for Agriculture (FAPA|), Warsaw 2008 (pp. 1032).
  • 2. Baran, E. (2011, April). The global market for glycerin, Retrieved March 20, 2013, from
  • 3. Melcer, A., Klugmann-Radziemska, E. & Ciunel, K. (2011). Development of glycerin phase from the production of biofuels, Archives of Waste Management and Environmental Protection 13(1), 1-20 from.
  • 4. Zhou, Z., Du, G., Hua, Z., Zhou, J. & Chen, J. (2011). Optimization of fumaric acid production by Rhizopus delemar based on the morphology formation. Bioresource Technol. 102(20), 9345–9349. DOI: 10.1016/j.biortech.2011.07.120.[Crossref]
  • 5. Erickson, B., Nelson, J.E. & Winters, P. (2012). Perspective on opportunities in industrial biotechnology in renewable chemicals. Biotechnol. J. 7(2), 176–185, DOI: 10.1002/biot.201100069.[Crossref]
  • 6. Deng Y., Lee S., Xu Q., Gao M. & Huang H. (2012). Production of fumaric acid by simultaneous saccharification and fermentation of starchy materials with 2-deoxyglucose-resistant mutant strains of Rhizopus oryzae. Bioresource Technol. 107, 363–367. DOI: 10.1016/j.biortech.2011.11.117.[Crossref]
  • 7. Choi, J.-H., Fukushi, K. & Yamamoto, K. (2008). A study on the removal of organic acids from wastewaters using nanofiltration membranes. Sep. Purif. Technol. 59(1), 17–25. DOI: 10.1016/j.seppur.2007.05.021.[Crossref][WoS]
  • 8. He, Y., Chena, G., Ji, Z. & Li, S. (2009). Combined UF– NF membrane system for filtering erythromycin fermentation broth and concentrating the filtrate to improve the downstream efficiency. Sep. Purif. Technol. 66(2), 390–396. DOI: 10.1016/j. seppur.2008.12.007.[Crossref][WoS]
  • 9. Umpucha, C., Galier, S., Kanchanatawee, S. & Roux-de Balmann, H. (2010). Nanofiltration as a purification step in production process of organic acids: Selectivity improvement by addition of an inorganic salt. Process Biochem. 45(11), 1763–1768. DOI: 10.1016/j.procbio.2010.01.015.[WoS][Crossref]
  • 10. Schonherr, J. & Bukovac, M.J. (1972). Dissociation constants of succinic acid 2,2-dimethylhydrazide. J. Agric. Food Chem. 20(6), 1263–1265. DOI: 10.1021/jf60184a023.[Crossref]
  • 11. Kang, S.H. & Chang, Y.K. (2005). Removal of organic acid salts from simulated fermentation broth containing succinate by nanofiltration. J. Membr. Sci. 246(1), 49–57. DOI: 10.1016/j. memsci.2004.08.014.[Crossref]
  • 12. Mullet, M., Fievet, P., Reggiani, J.C. & Pagetti, J. (1997). Surface electrochemical properties of mixed oxide ceramic membranes: Zeta-potential and surface charge density. J. Membr. Sci. 123(2), 255–265. DOI: 10.1016/S0376-7388(96)00220-7.[Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.