Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 1 | 117-122

Article title

Preparation and characterization of multi-walled carbon nanotubes grown on transition metal catalysts


Title variants

Languages of publication



Transition metal catalysts (mainly: iron, cobalt and nickel) on various supports are successfully used in a largescale production of carbon nanotubes (CNTs), but after the synthesis it is necessary to perform very aggressive purification treatments that cause damages of CNTs and are not always effective. In this work a preparation of unsupported catalysts and their application to the multi-walled carbon nanotubes synthesis is presented. Iron, cobalt and bimetallic iron-cobalt catalysts were obtained by co-precipitation of iron and cobalt ions followed by solid state reactions. Although metal particles were not supported on the hard-to-reduce oxides, these catalysts showed nanometric dimensions. The catalysts were used for the growth of multi-walled carbon nanotubes by the chemical vapor deposition method. The syntheses were conducted under ethylene - argon atmosphere at 700°C. The obtained catalysts and carbon materials after the synthesis were characterized using transmission electron microscopy (TEM), X-ray diffraction method (XRD), Raman spectroscopy and thermogravimetric analysis (TG). The effect of the kind of catalyst on the properties of the obtained carbon material has been described.









Physical description


1 - 03 - 2014
25 - 03 - 2014


  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Pułaskiego 10, 70-322 Szczecin, Poland


  • 1. Hong, S. & Myung, S. (2007). Nanotube electronics: a fl exible approach to mobility. Nat. Nanotechnology 2, 207-208. DOI: 10.1038/nnano.2007.89.[Crossref][WoS]
  • 2. Journet, C., Maser, W.K., Bernier, P., Loiseau, A., Lamy de la Chapelle, M., Lefrant, S., Deniard, P., Lee, R., & Fischer, J.E. (1997). Large-scale production of single-walled carbon nanotubes by the electric-arc technique. Nature 388, 756-758.
  • 3. Guo, T., Nikolaev, P., Thess, A., Colbert, D.T. & Smalley, R.E. (1995). Catalytic growth of single-walled nanotubes by laser vaporization. Chem. Phys. Lett. 243, 49-54. DOI: 10.1016/0009-2614(95)00825-O.[Crossref]
  • 4. Qiu, J., An, Y., Zhao, Z., Li, Y. & Zhou, Y. (2004). Catalytic synthesis of single-walled carbon nanotubes from coal gas by chemical vapor deposition method. Fuel Process. Technol. 85, 913-920. DOI: 10.1016/j.fuproc.2003.11.033.[Crossref]
  • 5. Sengupta, J. & Chacko, J. (2009). Growth temperature dependence of partially Fe fi lled MWCNT using chemical vapor deposition. J. Cryst. Growth 311, 4692-4697. DOI: 10.1016/j. jcrysgro.2009.09.029.[WoS][Crossref]
  • 6. Deck, Ch.P. & Vecchio, K. (2006). Prediction of carbon nanotube growth success by the analysis of carbon-catalyst binary phase diagrams. Carbon 44, 267-275. DOI: 10.1016/j. carbon.2005.07.023.[Crossref]
  • 7. Journet, C., Picher, M. & Jourdain, V. (2012). Carbon nanotube synthesis: from large-scale production to atom-by- -atom growth. Nanotechnology 13, 1-19. DOI: 10.1088/0957-4484/23/14/142001.[Crossref]
  • 8. Esconjauregui, S., Whelan, C.M. & Maex, K. (2009). The reasons why metals catalyze the nucleation and growth of carbon nanotubes and other carbon nanomorphologies. Carbon 47, 659-669. DOI: 10.1016/j.carbon.2008.10.047.[WoS][Crossref]
  • 9. Liu, B.C., Yu, B. & Zhang, M.X. (2005). Catalytic CVD synthesis of double-walled carbon nanotubes with a narrow distribution of diameters over Fe-Co/MgO catalyst. Chem. Phys. Lett. 407, 232-235. DOI: 10.1016/j.cplett.2005.03.093.[Crossref]
  • 10. MacKenzie, K., Dunens, O., Harris, A.T. (2009). A review of carbon nanotube purifi cation by microwave assisted acid digestion. Sep. Purif. Technol. 66, 209-222. DOI: 10.1016/j. seppur.2009.01.017.[WoS][Crossref]
  • 11. Mauron, P., Emmenegger, Ch., Sudan, P., Wenger, P., Rentsch, S. & Züttel, A. (2003). Fluidised-bed CVD synthesis of carbon nanotubes on Fe2O3/MgO, Diamond Relat. Mater. 12, 780-785. DOI: 10.1016/S0925-9635(02)00337-0.[Crossref]
  • 12. Weast, R.C. (1980). CRC Handbook of Chemistry and Physics (60th ed.). CRC Press, Boca Raton, Florida, USA.
  • 13. Schwarz, J.A., Contescu, C. & Contescu, A. (1995). Methods for preparation of catalytic materials. Chem. Rev. 95, 477-510. DOI: 10.1021/cr00035a002.[Crossref]
  • 14. Li, Y.L., Kinloch, I.A., Shaffer, M.S.P., Geng, J., Johnson, B., Windle, A.H. (2004). Synthesis of single-walled carbon nanotubes by a fl uidized-bed method. Chem. Phys. Lett. 384, 98-102. DOI: 10.1016/j.cplett.2003.11.070.[Crossref]
  • 15. See, C.H. & Harris, A.T. (2007). On the development of fl uidized bed chemical vapour deposition for large-scale carbon nanotube synthesis: Infl uence of synthesis temperature. Aust. J. Chem. 60, 541-546. DOI: 10.1071/CH06398.[Crossref]
  • 16. Chai, S.P., Zein, S.H.S. & Mohamed, A.R. (2007). The effect of reduction temperature on Co-Mo/Al2O3 catalysts for carbon nanotubes formation. Appl. Catal. A: General. 326, 173-179. DOI: 10.1016/j.apcata.2007.04.020.[Crossref]
  • 17. Dikonimos Makris, Th., Giorgi, L., Giorgi, R., Lisi, N. & Salernitano, E. (2005). CNT growth on alumina supported nickel catalyst by thermal CVD. Diamond Relat. Mater. 14, 815-819. DOI: 10.1016/j.diamond.2004.11.001.[Crossref]
  • 18. Edwards, E.R., Antunes, E.F., Botelho, E.C., Baldan, M.R. & Corat, E.J. (2011). Evaluation of residual iron in carbon nanotubes purifi ed by acid treatments. Appl. Surf. Sci. 258, 641-648. DOI: 10.1016/j.apsusc.2011.07.032.[Crossref][WoS]
  • 19. Lehman, J.H., Terrones, M., Mansfi eld, E., Hurst, K.E. & Meunier, V. (2011). Evaluating the characteristics of multiwall carbon nanotubes. Carbon 49, 2581-2602. DOI: 10.1016/j. carbon.2011.03.028.[WoS][Crossref]
  • 20. Narkiewicz, U., Podsiadły, M., Jędrzejewski, R. & Pełech, I. (2010). Catalytic decomposition of hydrocarbons on cobalt, nickel and iron catalysts to obtain carbon nanomaterials. Appl. Catal. A: General 384, 27-35. DOI: 10.1016/j.apcata.2010.05.050.[WoS][Crossref]
  • 21. Thomas, J.M. (1965). Microscopic Studies of Graphite Oxidation. Chemistry and Physics of Carbon; Walker, P.L., Jr., Ed.; Marcel Dekker: New York, 1, 121-202.
  • 22. Becker, M. J., Xia, W., Tessonnier, J.P., Blume, R., Yao, L., Schlogl R. & Muhler M. (2011). Optimizing the synthesis of cobalt-based catalysts for the selective growth of multiwalled carbon nanotubes under industrially relevant conditions. Carbon 49, 5253-5264. DOI: 10.1016/j.carbon.2011.07.043.[WoS][Crossref]
  • 23. McKee, G.S.B. & Vecchio, K.S. (2006). Thermogravimetric analysis of synthesis variation effects on CVD generated multiwalled carbon nanotubes. J. Phys. Chem. B 110, 1179-1186. DOI: 10.1021/jp054265h.[Crossref]
  • 24. Koos, A.A., Dillon, F., Obraztsova, E.A., Crossley, A. & Grobert, N. (2010). Comparison of structural changes in nitrogen and boron-doped multi-walled carbon nanotubes. Carbon. 48, 3033-3041. DOI: 10.1016/j.carbon.2010.04.026.[Crossref]
  • 25. Irani, F., Jannesari, A. & Bastani, S. (2013). Effect of fl uorination of multiwalled carbon nanotubes (MWCNTs) on the surface properties of fouling-release silicone/MWCNTs coatings. Prog. Org. Coat. 76, 375-383. DOI: 10.1016/j.porgcoat. 2012.10.023].[Crossref][WoS]
  • 26. Ko, F-H., Lee, C-Y., Ko, C-J. & Chu, T-C. (2005). Purifi cation of multi-walled carbon nanotubes through microwave heating of nitric acid in a closed vessel. Carbon. 43, 727-733. DOI: 10.1016/j.carbon.2004.10.042].[Crossref]
  • 27. Bom, D., Andrews, R., Jacques, D., Anthony, J., Chen, B., Meier, M.S. & Selegue, J.P. (2002). Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotubes chemistry. Nano Lett. 2, 615-619. DOI: 10.1021/nl020297u [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.