Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 1 | 75-80

Article title

Application of a carbazole derivative as a spectroscopic fluorescent probe for real time monitoring of cationic photopolymerization


Title variants

Languages of publication



The performance of 1-(9-ethylcarbazol-3-yl)-4,4,4-trifluorobutane-1,3-dione (1) as a fluorescent probe for the monitoring of cationic photopolymerization processes by Fluorescence Probe Technique (FPT) has been evaluated in comparison with the response of 7-diethylamino-4-methylcoumarin (Coumarin 1) (2). Triethylene glycol divinyl ether and diphenyliodonium hexafluorophosphate were used as an example monomer and a cationic photoinitiator respectively. It has been found that the probe 1 withstands the cationic polymerization conditions and provides correct probe response. 1-(9-ethylcarbazol-3-yl)-4,4,4-trifluorobutane-1,3-dione shifts its fluorescence spectrum with progress of cationic photopolymerization of the monomer, which enables the monitoring of the polymerization progress using the fluorescence intensity ratio measured at two different wavelengths as the progress indicator. By comparing the behavior of 1 and 2, it has been documented that the fluorescence spectrum of probe 1 shows a spectacular hypsochromic shift (Δλ = 33 nm) upon the monomer polymerization, while the shift of 2 is three times smaller (Δλ = 11 nm). Moreover, the sensitivity of probe 1 is more than 2.5-times higher than that of any other probes suitable for monitoring cationic polymerization processes, reported previously. Therefore, application of the carbazole derivative (1) as a new probe for the monitoring of the crosslinking process of coatings cured by cationic photopolymerization has been proposed.









Physical description


1 - 03 - 2014
25 - 03 - 2014


  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Chair of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Chair of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Chair of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Kraków, Poland
  • Cracow University of Technology, Faculty of Chemical Engineering and Technology, Chair of Biotechnology and Physical Chemistry, Warszawska 24, 31-155 Kraków, Poland


  • 1. Zhang, J., Campbell, R.E., Ting, A.Y. & Tsien, R.Y. (2002). Creating new fluorescent probes for cell biology. Nat. Rev. Mol. Cell. Biol. 3(12), 906-918. DOI: 10.1038/nrm976.[Crossref]
  • 2. Goncalves, M.S.T. (2009). Fluorescent labeling of biomolecules with organic probes. Chem. Rev.109(1), 190-212. DOI: 10.1021/cr0783840.[Crossref][WoS]
  • 3. Reichardt, Ch. (1994). Solvatochromic dyes as solvent polarity indicators. Chem. Rev. 94, 2319-2358. DOI: 10.1021/ cr00032a005.[Crossref]
  • 4. Haidekker, M.A., Brady, T.P., Lichlyter, D. & Theodorakis, E.A. (2005). Efects of solvent polarity and solvent viscosity on the fluorescent properties of molecular rotors and related probes. Bioorg.Chem. 33(6), 415-425. DOI: 10.1016/j. bioorg.2005.07.005.[Crossref]
  • 5. Ortyl, J., Sawicz, K. & Popielarz, R. (2010). Performance of amidocoumarins as probes for monitoring of cationic photopolymerization of monomers by fluorescence probe technology. J. Polym. Sci., Part A: Polym. Chem. 48(20), 4522-4626. DOI: 10.1002/pola.24243.[WoS][Crossref]
  • 6. Ortyl, J., Galek, M., Milart, P. & Popielarz, R. (2012). Aminophthalimide probes for monitoring of cationic photopolymerization by Fluorescence Probe Technology and their effect on the polymerization kinetics. Polymer Testing. 31(3), 466-473. DOI:10.1016/j.polymertesting.2012.01.008.[Crossref]
  • 7. Hu, S., Popielarz, R. & Neckers, D.C. (1998). Fluorescence Probe Techniques (FPT) for measuring the relative efficiencies of free-radical photoinitiators. Macromolecules 31, 4107-4113. DOI: 10.1021/ma971390l.[Crossref]
  • 8. Vatanparast, R., Li, S., Hakala, K. & Lemmetyinen, H. (2000). Monitoring of curing of polyurethane polymers with fluorescence method. Macromolecules, 33, 438-443. DOI: 10.1021/ma991414j.[Crossref]
  • 9. Itagaki, H., Horie, K. & Mitra, I. (1990). Luminescent probe studies of the microstructure and mobility of solid polymers. Prog. Polym. Sci., 15(3), 361-424. DOI: 10.1016/0079-6700(90)90002-I.[Crossref]
  • 10. Ortyl, J., Sawicz-Kryniger, K. & Popielarz, R. (2011). Mechanism of Coumarin 1 probe response in fl uorescence probe technology (FPT). Przem. Chem. 90(7), 1370-1378.
  • 11. Bosch, P., Catalina, F., Corrales, T. & Peinado, C. (2005). Fluorescent probes for sensing processes in polymers. Chem. Eur. J.. 11, 4314-4325. DOI: 10.1002/chem.200401349.[Crossref]
  • 12. Ortyl, J., Galek, M., Sawicz-Kryniger, K. & Popielarz, R. (2010). Monitoring of cationic photopolymerization with stilbene derivatives as fl uorescent probes. Przem. Chem. 89(12): 1642-1646.
  • 13. Xiang-Dong Sun & Chong Sook Paik Sung. (1996). Cure characterization in polyurethane and model urethane reactions by an intrinsic fuorescence technique. Macromolecules. 29, 3198-3202. DOI: 10.1021/ma9515339.[Crossref]
  • 14. Schaeken, T.C. & Warman, J.M. (1995). Radiation-induced polymerization of a mono- and diacrylate studied using a fl uorescent molecular probe. J. Phys. Chem. 99, 6145-6151. DOI: 10.1021/j100016a059.[Crossref]
  • 15. Ortyl, J. & Popielarz, R. (2013). The performance of 7-hydroxycoumarin-3-carbonitrile and 7-hydroxycoumarin-3-carboxylic acid as fl uorescent probes for monitoring of cationic photopolymerization processes by FPT, J. Appl. Polym. Sci. 128 (3), 1974-1978. DOI: 10.1002/app.38378.[Crossref][WoS]
  • 16. Wang, J.Z., Song, J.C., Rong Bao & Neckers, D.C. (1996). Fluorescence probes for monitoring polymerization processes. J. Polym. Sci. Part B. 34(2), 325-333. DOI: 10.1002/(SICI)1099-0488(19960130)34:2<325::AID-POLB13>3.0.CO;2-L.[Crossref]
  • 17. Sawicz, K., Ortyl, J. & Popielarz, R. (2010). Applicability of 7-hydroxy-4-methylcoumarin for cure monitoring and marking of epoxy resins. Polimery 55(7-8), 539-544.
  • 18. Okay, O., Kaya, D. & Pekcan, O. (1999). Free-radical crosslinking polymerization of styrene and divinylbenzene: real time monitoring of the gel effect fl uorescence probe. Polymer. 40, 6179-6187. DOI:10.1016/S0032-3861(98)00831-3.[Crossref]
  • 19. Bowyer, P.M., Iles, D.H. & Ledwith, A. (1971). Chlorination of carbazole and its derivatives with 1-chlorobenzotriazole. J. Chem. Soc. C, 2775-2777. DOI: 10.1039/J39710002775.[Crossref]
  • 20. He, P., Wang, H., Liu, S., Shi, J., Wang, G. & Gong, M. (2009). Effect of different alkyl groups at the N-position on the luminescence of carbazole-based β-diketonate europium(III) complexes. J. Phys. Chem. A. 113(46), 12885-12890. DOI: 10.1021/jp908416q.[Crossref][WoS]
  • 21. Ortyl, J., Sawicz, K., Popielarz, R., Galek, M., Milart, P. (2010). Applicability of selected biphenyl derivatives for monitoring of cationic photopolymerization by Fluorescent Probe Technology. Luminescence, 25, 225-226.
  • 22. Ortyl, J., Popielarz, R. (2012). New photoinitiators for cationic polymerization. Polimery, 57, 510-517.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.