Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 16 | 1 | 70-74

Article title

Chemistry for nanotechnology


Title variants

Languages of publication



In recent years, the processing order during the synthesis of new chemical compounds has been redefined. Until now a chemist considered primarily receiving a new compound and only then searched for its potential application. The new philosophy of proceedings forces chemists to answer the question: what physical and chemical properties a new chemical compound must have, and what should be structured. After that it has to be planned how to get the compound including the defined budget. The compounds obtained by conventional chemical synthesis are then used to create new functional materials having the properties as scheduled. The paper presents the way of the proceedings from a molecular receptor to a new nanomaterial containing this receptor, so in other words from individual molecules to new material with specific and previously planned properties.









Physical description


1 - 03 - 2014
25 - 03 - 2014


  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland
  • Adam Mickiewicz University in Poznań, Faculty of Chemistry, Umultowska 89b, 61-614 Poznań, Poland


  • 1. The American Chemical Society; http://www.cas.org/
  • 2. Schroeder, G. (2011). Molecular receptors. From receptor molecules to functional materials, Wiad. Chem. 65, 1021.
  • 3. Molecular Receptors properties and applications. (2009). Ed. G. Schroeder, Cursiva, 2009, ISBN 978-83-62108-02-2.
  • 4. Chemical functionalization of surfaces for nanotechnology (2011) Ed. G. Schroeder, Cursiva, ISBN 978-83-62108-07-7.
  • 5. Heise, Ch. & Bier, F.F. (2006). Immobilization of DNA on Microarrays, Top. Curr. Chem., 261, 1, DOI: 10.1007/128_007.[Crossref]
  • 6. Takahashi, S. & Anzai, J. (2005). Phenylboronic Acid Monolayer-Modifi ed Electrodes Sensitive to Sugars, Langmuir 21, 5102, DOI: 10.1021/la050171n.[Crossref]
  • 7. Barriet, D., Yam, C.M., Shmakova, O.E., Jamison, A.C. & Lee, T.R. (2007). 4-Mercaptophenylboronic Acid SAMs on Gold: Comparison with SAMs Derived from Thiophenol, 4-Mercaptophenol, and 4-Mercaptobenzoic Acid, Langmuir 23, 8866, DOI: 10.1021/la7007733.[WoS][Crossref]
  • 8. Baker, G.A., Desikan, R. & Thundat, T. (2008). Label-free sugar detection using phenylboronic acid-functionalized piezoresistive microcantilevers, Anal. Chem. 80, 4860, DOI: 10.1021/ ac702588b.[WoS][Crossref]
  • 9. Takahashi, S. & Anzai, J. (2005). Phenylboronic acid monolayer- modifi ed electrodes sensitive to sugars. Langmuir, 24, 5102, DOI: 10.1021/la050171n.[Crossref]
  • 10. Boronic Acids. Preparation and Applications in Organic Synthesis and Medicine. Ed. D.G. Hall, WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005, ISBN-13:978-3-527-30991-7.
  • 11. Adamczak-Woźniak, A. (2010). Synthesis application and stability of phenylboronic esters (pp. 59-85), In Functionalized molecules - synthesis, proporties and application, Ed. V.I. Rybachenko, Schidnyj Wydawnyczyj Dim, Donetsk, ISSN 978-966-317-076
  • 12. Adamczak-Woźniak, A. (2010). Phenylboronic compounds as molecular recognition and self-assembing agents (pp. 9-25), in Functionalized molecules - synthesis, proporties and application, Ed. V.I. Rybachenko, Schidnyj Wydawnyczyj Dim, Donetsk, ISSN 978-966-317-076.
  • 13. Spożyński, A., Adamczak-Woźniak, A. & Żubrowska, A. (2008). Interamolecular interactions in orto-aminomethylphenylboronic acids - potent sacharide receptor, (pp.75-91), In From concept to molecular receptor, Ed. V.I. Rybachenko, Schidnyj Wydawnyczyj Dim, Donetsk, ISSN 978-966-317-022-0.
  • 14. Spożyński, A., Żubrowska, A. & Adamczak-Woźniak, A. (2007). Synthesis of boronic acids-molecular receptor for sugars (pp. 51-89), In Synthetic receptors in molecullar recognition, Ed. V.I. Rybachenko, Schidnyj Wydawnyczyj Dim, Donetsk, ISSN 978-966-317-013-8.
  • 15. Schubert, U.S., Hofmeier, H., Newkome, G.R. (2006). Modern Terpyridine Chemistry, Wiley-VCH Verlag GmbH & Co.KGaA, Weinheim, ISBN-13:978-3-527-31475-1.
  • 16. Constable, E.C. (2007). 2,2’:6’,2”-Terpyridines: From chemical obscurity to common supramolecular motifs, Chem. Soc. Rev., 36, 246, DOI: 10.1039/b601166g.[WoS][Crossref]
  • 17. Harris, E.K. (2010). Polymer or Macrocycle? Cobalt Complexes of Ditopic 2,2’:6’,2” - Terpyridine Ligands with Flexible Spacers, PhD thesis, University of Basel, Basel.
  • 18. Chiper, M. (2008). Advanced supramolecular assemblies based on terpyridine metal complexes: Understanding reaction parameters and designing new materials, PhD thesis, Technische Universiteit Eindhoven, 19. Hofmeier, H. & Schubert, U.S. (2004). Recent developments in the supramolecular chemistry of terpyridine-metal complexes, Chem. Soc. Rev., 30, 373, DOI: 10.1039/b400653b.[Crossref]
  • 20. Schubert, U.S. & Eschbaumer, C. (2002). Macromolecules containing bipyridine and terpyridine metal complexes: towards metallosupramolecular polymers, Angew. Chem. Int. Ed., 41, 2892, DOI: 10.1002/1521-3773.[Crossref]
  • 21. Shunmugam, R., Gabriel, G.J., Aamer, K.A., Tew, G.N. (2010). Metal-ligand-containing polymers: terpyridine as the supramolecular unit, Macromol Rapid Commun., 12, 784, DOI: 10.1002/marc.200900869.[Crossref]
  • 22. Sakamoto, R., Katagiri, S., Maeda, H. & Nishihara, H. (2013). Bis(terpyridine) metal complex wires: Excellent long- -range electron transferability and controllable intrawire redox conduction on silicon electrode, Coord. Chem. Rev., 257, 1493, DOI: org/10.1016/j.ccr.2012.08.025. [WoS]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.