Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 111-115

Article title

Studies on the deactivation of Ti-MCM-41 catalyst in the process of allyl alcohol epoxidation


Title variants

Languages of publication



The synthesis of Ti-MCM-41 catalyst was performed. The obtained catalyst was characterized by the following instrumental methods: UV-vis, IR spectroscopy, XRD, and X-ray microanalysis. The activity of the obtained catalyst was tested in the process of allyl alcohol epoxidation with 30 wt.% hydrogen peroxide in methanol as a solvent and under atmospheric pressure. In the next stage, recovery of Ti-MCM-41 catalyst from the post-reaction mixture and its regeneration by washing with appropriate solvents and drying were conducted. In the case of total loss of the activity of the catalyst, calcination of the catalyst was also carried out. The loss of titanium from the structure of Ti-MCM-41 catalyst and a partial collapsing of the structure of this catalyst can be the main reason of the decrease the activity of the catalyst what was manly visible in the decrease of the values of two functions of this process: the allyl alcohol conversion and conversion of hydrogen peroxide to organic compounds.









Physical description


1 - 12 - 2013
31 - 12 - 2013


  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Organic Chemical Technology, ul. Pułaskiego 10, 70-322 Szczecin, Poland


  • 1. Bhaumik, A. & Tatsumi, T. (2000). Organically Modifi ed Titanium-Rich Ti-MCM-41, Effi cient Catalysts for Epoxidation Reactions. J. Catal., 189, 31-39.
  • 2. Grün, M., Unger, K.K., Matsumoto, A. & Tsutsumi, K. (1999). Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Micropor. Mesopor. Mat., 27, 207-216.
  • 3. Wróblewska, A. & Wajzberg, J. (2011). Applying of the atmospheric pressure method for epoxidation of allyl alcohol over titanium silicalite TS-2 catalyst. Oxid. Commun. 34(2), 339-248.
  • 4. Fajdek, A., Wróblewska, A. & Milchert, E. (2011). Selective liquid-phase oxidation of allyl alkohol to glycidol over MWW type titanosilicalite. Reac. Kinet. Mech. Cat. 103, 451-462. DOI: 0.1007/s11144-011-0312-5.
  • 5. Wróblewska, A. & Fajdek, A. (2011) Catalytic epoxidation of allyl alcohol with hydrogen peroxide under autogenic pressure over Ti-MWW catalyst. J. Adv. Oxid. Technol. 14(1), 122-130.
  • 6. Wróblewska, A. & Fajdek, A. (2010). Epoxidation of allyl alcohol to glycidol over the microporous TS-1 catalyst. J. Hazard. Mater. 179, 258-265. DOI: 10.1016/j.jhazmat.2010.02.088.[WoS][Crossref]
  • 7. Wróblewska, A., Fajdek, A., Wajzberg, J. & Milchert, E. (2009). Epoxidation of allyl alcohol over mesoporous Ti- MCM-41 catalyst. J. Hazard. Mater. 170, 405-410. DOI: 10.1016/j. jhazmat.2009.04.082.[Crossref][WoS]
  • 8. Liu, X., Wang, X., Guo, X., Li, G. & Yan, H. (2004). Regeneration of lamina TS-1 catalyst in the epoxidation of propylene with hydrogen peroxide. Catal. Lett., 97, 223-229.[WoS]
  • 9. Liu, H., Lua,G., Guoa, Y. & Wang, J. (2005). Deactivation and regeneration of TS-1/diatomite catalyst for hydroxylation of phenol in fi xed-bed reactor. Chem. Eng. J., 108, 187-192. DOI: 10.1016/j.cej.2005.01.011.[Crossref]
  • 10. Sheldon, R.A., Arends, I.W.C.E. & Lempers, H.E.B. (1998). Liquid phase oxidation at metal ions and complexes in constrained environments, Catal. Today, 41, 387-407.
  • 11. Davies, L.J., McMorn, P., Bethell, D., Bulman P.C., Page, F., King, F.E., Hancock, G. & Hutchings, J. (2000). By-product formation causes leaching of Ti from the redox molecular sieve TS-1. Chem. Commun., 1807-1808.
  • 12. Davies, L.J., McMorn, P., Bethell, D., Bulman P.C., Page, F., King, F.E., Hancock, G. & Hutchings, J. (2001). Oxidation of crotyl alcohol using Ti- and Ti-MCM-41 catalysts. J. Mol. Catal. A: Chem., 165, 243-247.
  • 13. Zecchina, A., Bordiga, S., Lamberti, C., Ricchiardi, G., Lamberti, C., Ricchiardi, G., Scarano, D., Petrini, G., Leofanti, G. & Mantegazza, M. (1996). Structural characterization of Ti centres in Ti-silicalite and reaction mechanisms in cyclohexanone ammoximation. Catal. Today, 32, 97-106.
  • 14. Davies, L.J, McMorn, P., Bethell, D., Bulman Page, P.C., Kings, F., Hancock, F.E. & Hutchings, G.J. (2001). Epoxidation of crotyl alcohol using Ti-containing heterogeneous catalysts: comments on the loss of Ti by leaching. J. Catal. 198, 319-327. DOI: 10.1006/jcat.2000.3139.[Crossref]
  • 15. Wróblewska, A. (2008). The epoxidation of allylic compounds with hydrogen peroxide in the presence of titanium silicalite catalysts, Research studies of Technical University of Szczecin, 608, 1-116.
  • 16. Wróblewska, A. & Makuch, E. (2012). The utilization of Ti-SBA-15 catalyst in the epoxidation of allylic alcohols. React. Kinet. Mech. Catal., 105, 451-468. DOI: 10.1007/s11144-011-0405-1.[Crossref]
  • 17. Brill, W.F. & Barone, B.J. (1964). The liquid phase oxidation of the lower olefi ns. J. Org. Chem., 29 (1), 140-143.[Crossref]
  • 18. Golowa, B.M., Motowiljak, L.W., Politanskij, S.F., Stjepanow, M.W. & Czeljadin, W.T. (1974). The establishing the products in the process of glycerol obtaining during the epoxidation of allyl alcohol. Zawod. Lab., 40, 1192-1194.
  • 19. Uphade, B.S., Yamada, Y., Akita, T., Nakamura, T. & Haruta, M. (2001). Synthesis and characterization of Ti- MCM-41 and vapor-phase epoxidation of propylene using H2 and O2 over Au/Ti-MCM-41, Appl. Catal. A: Gen., 215, 137-148.
  • 20. Uphade, B.S., Akita, T., Nakamura, T. & Haruta, M. (2002). Vapor-Phase Epoxidation of Propene Using H2 and O2 over Au/Ti-MCM-48, J. Catal., 209, 331-340. DOI: 10.1006/ jcat.2002.3642.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.