PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 102-106
Article title

Utilization of spent brewer’s yeast for supplementation of distillery corn mashes

Content
Title variants
Languages of publication
EN
Abstracts
EN
The aim of the study was to use spent brewer’s yeast biomass (SBY) as a nutrient adjunct of distillery type corn mashes to improve the process of ethanol fermentation by yeast Saccharomyces cerevisiae. There were prepared corn mashes with raw material loading at 20% ww. with SBY addition at solids loadings of 0 (control); 0.1; 0.5; 0.7; 1.0; 3.0 and 5.0% ww. The obtained mashes were inoculated with yeast and subjected to batch fermentation for 72 h. It was observed that supplementation of corn mashes with SBY improved the process of fermentation. The consumption of sugars and production of ethanol by yeast in supplemented mashes was accelerated and the overall ethanol yield was improved by 6.5 to 11% depending on the amount of added SBY. It was also observed that the fermentation could be shortened by 24 h in mashes enriched with SBY.
Publisher
Year
Volume
15
Issue
4
Pages
102-106
Physical description
Dates
published
1 - 12 - 2013
online
31 - 12 - 2013
References
  • 1. Dickinson, J.R. (2004). Nitrogen metabolism. In: J.R. Dickinson & M. Schweizer (Eds.), The Metabolism and MolecularPhysiology of Saccharomyces cerevisiae, second ed. (pp. 42-104). London: CRC Press.
  • 2. Kotarska, K., Czupryński, B. & Kłosowski, G. (2006). Effect of varoius activators on the course of alcoholic fermentation. J. Food Eng. 77, 965-971. DOI: 10.1016/j.jfoodeng.2005.08.041.[Crossref]
  • 3. Munoz, E. & Ingledew, W.M. (1989). Effect of yeast hulls on stuck and sluggish wine fermentations: importance of the lipid component. Appl. Environ. Microbiol. 55(6), 1560-1564.
  • 4. Kawa-Rygielska, J., Pietrzak, W., Regiel, P. & Stencel, P. (2013). Utilization of concentrate after membrane fi ltration of sugar beet thin juice for ethanol production. BioresourceTechnol. 133, 134-141. DOI: 10.1016/j.biortech.2013.01.070.[Crossref]
  • 5. Junior, M.M., de Oliveira, J.E., Batistote, M. & Ernandes, J.R. (2012). Evaluation of Brazilian ethanol production yeasts for maltose fermentation in media containing structurally complex nitrogen sources. J. Inst. Brew. 118, 82-88. DOI: 10.1002/jib.3.[Crossref][WoS]
  • 6. Yao, L., Wang, T. & Wang, H. (2011). Effect of soy skim from soybean aqueous processing on the performance of corn ethanol fermentation. Bioresource Technol. 102, 9199-9205. DOI: 10.1016/j.biortech.2011.06.071.[Crossref][WoS]
  • 7. Kawa-Rygielska, J. & Pietrzak, W. (2012). Use of dried distiller’s grains with solubles (DDGS) in the production of bioethanol. Przem. Chem. 91(9), 1876-1879.
  • 8. Ferreira, I.M.P.L.V.O., Pinho, O., Vieira, E. & Tavarela, J.G. (2010). Brewer’s Saccharomyces yeast biomass: characteristics and potential applications. Trends Food Sci. Technol. 21, 77-84. DOI: 10.1016/j.tifs.2009.10.008.[Crossref]
  • 9. Liu, H., Lin, J.P., Cen, P.L. & Pan, Y.J. (2004). Co-production of S-adenosyl-L-methionine and glutathione from spent brewer’s yeast cells. Process Biochem. 39, 1993-1997. DOI: 10.1016/j.procbio.2003.09.031.[Crossref]
  • 10. In, M., Kim, D.C. & Chae, H.J. (2005). Downstream process fort he production of yeast extract using brewer’s yeast cells. Biotechnol. Bioproc. E. 10, 85-90.
  • 11. Thanardkit, P., Khunrae, P., Suphantharika, M. & Verduyn, C. (2002). Glucan from spent brewer’s yeast: preparation, analysis and use as a potential immunostimulant in shrimp feed. World J. Microb. Biot. 18, 527-539. DOI: 10.1023/A:1016322227535.[Crossref]
  • 12. Mussatto, S.I. (2009). Biotechnological potential of brewing industry by-products. In: P.S. Nigam & A. Pandey (Eds.) Biotechnology for agro-industrial residues utilisation, (pp. 313-326) London: Springer Science+Business Media.
  • 13. BS EN ISO 10520:1998. Native starch. Determination of starch content. Ewers polarimetric method, ISBN: 0 580 30395 0.
  • 14. Kawa-Rygielska, J., Pietrzak, W. & Czubaszek, A. (2012). Characterization of fermentation of waste wheat-rye bread mashes with the addition of complex enzymatic preparations. BiomassBioenerg. 44, 17-22. DOI: 10.1016/j.biombioe.2012.04.016.[WoS][Crossref]
  • 15. Millati, R., Edebo, L. & Taherzadeh, M.J. (2005). Performance of Rhizomucor and Mucor in ethanol production from glucose, xylose and wood hydrolyzates. Enzyme Microb. Technol. 36, 294-300. DOI: 10.1016/j.enzmictec.2004.09.007.[Crossref]
  • 16. Jones, A.M. & Ingledew, W.M. (1994). Fermentation of very high gravity wheat mash prepared using fresh yeast autolysate. Bioresource Technol. 50, 97-101.
  • 17. Muthaiyan, A., Limayem, A. & Ricke, S.C. (2011). Antimicrobial strategies for limiting bacterial contaminations in fuel bioethanol fermentations. Prog. Energ. Combust. Sci. 37, 351-370. DOI: 10.1016/j.pecs.2010.06.005.[Crossref]
  • 18. Kawa-Rygielska, J., Pietrzak, W. & Pęksa, A. (2012). Potato granules processing line by-products as a feedstock for ethanol production. Pol. J. Environ. Stud. 21(5), 1249-1255.
  • 19. Laopaiboon, L., Nuanpeng, S., Srinophakun, P., Klanrit, P. & Laopaiboon, P. (2009). Ethanol production from sweet sorghum juice using very high gravity technology: Effects of carbon and nitrogen supplementations. Bioresource Technol., 100, 4176-4182. DOI: 10.1016/j.biortech.2009.03.046.[Crossref][WoS]
  • 20. Blomberg, A. & Adler, L. (1989). Roles of glycerol and glucerol-3-phosphate dehydrogenase (NAD+) in aquired osmotolerance of Saccharomyces cerevisiae. J. Bacteriol. 171, 1087-1092.
  • 21. Bely, M., Rinaldi, A. & Dubourdieu, D. (2003). Infl uence of assimilable nitrogen on volatile acidity production by Saccharomyces cerevisiae during high sugar fermentation. J. Biosci. Bioeng. 96, 507-512. DOI: 10.1263/jbb.96.5 [Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0076
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.