Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 95-101

Article title

Effect of boron on ZSM-5 catalyst for methanol to propylene conversion

Content

Title variants

Languages of publication

EN

Abstracts

EN
B-ZSM-5 catalysts were prepared by various modification methods with boric acid, including ion-exchange, impregnation and direct synthesis. The catalysts were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), NH3-Temperature Programmed Desorption (NH3-TPD), N2 adsorption-desorption, Fourier Transform Infrared spectrometry (FT-IR), 27Al and 11B MAS NMR spectra. The results revealed that the weak acidity of catalysts was significantly increased by modification. The catalytic activity was measured in a fixed bed at 460°C for methanol to propylene (MTP) reaction. The results of MTP reaction showed a great increment of the propylene selectivity for the boron modified samples, especially for the directly synthesized B-ZSM-5 which also displayed high activity and selectivity towards C2 =-C4 = olefins. It was found that the remarkable selectivity strongly depended on the intensity of weak acidity.

Publisher

Year

Volume

15

Issue

4

Pages

95-101

Physical description

Dates

published
1 - 12 - 2013
online
31 - 12 - 2013

Contributors

author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China
author
  • East China University of Science and Technology, Engineering Research Center of Large Scale Reactor Engineering and Technology of the Ministry of Education, State Key Laboratory of Chemical Engineering, Shanghai 200237, China

References

  • 1. Ramesh, K., Hui, L.M., Han, Y.F. & Armando, B. (2009). Structure and reactivity of phosphorous modifi ed H-ZSM-5 catalysts for ethanol dehydration. Catal. Commun. 10, 567-571. DOI: 10.1016/j.catcom.2008.10.034.[WoS][Crossref]
  • 2. Wei, R.H., Li, C.Y., Yang, C.H. & Shan, H.H. (2011). Effects of ammonium exchange and Si/Al ratio on the conversion of methanol to propylene over a novel and large partical size ZSM-5. J. Nat. Gas Chem. 20, 261-265. DOI: 10.1016/S1003-9953(10)60198-3.[WoS][Crossref]
  • 3. Liu, J., Zhang, C.X., Shen, Z.H., Hua, W.M., Tang, Y., Shen, W., Yue, Y.H. & Xu, H.L. (2009). Methanol to propylene: Effect of phosphorus on a high silica HZSM-5 catalyst. Catal. Commun. 10, 1506-1509. DOI: 10.1016/j.catcom. 2009.04.004.[WoS][Crossref]
  • 4. Mei, C.S., Wen, P.Y., Liu, Z.C., Liu, H.X., Wang, Y.D., Yang, W.M., Xie, Z.K., Hua, W.M. & Gao, Z. (2008). Selective production of propylene from methanol: Mesoporosity development in high silica HZSM-5. J. Catal. 258, 243-249. DOI: 10.1016/j.jcat.2008.06.019.
  • 5. Stöcker, M. (1999). Methanol-to-hydrocarbons: catalytic materials and their behavior. Micropor. Mesopor. Mater. 29, 3-48. DOI: 10.1016/S1387-1811(98)00319-9.[Crossref]
  • 6. Firoozi, M., Baghalha, M. & Asadi, M. (2009). The effect of micro and nano particle sizes of H-ZSM-5 on the selectivity of MTP reaction. Catal. Commun. 10, 1582-1585. DOI: 10.1016/j.catcom.2009.04.021.[WoS][Crossref]
  • 7. Sazama, P., Wichterlova, B., Dedecek, J., Tvaruzkova, Z., Musilova, Z., Palumbo, L., Sklenak, S. & Gonsiorova, O. (2011). FTIR and 27Al MAS NMR analysis of the effect of framework Al- and Si-defects in micro- and micro-mesoporous H-ZSM-5 on conversion of methanol to hydrocarbons. Micropor. Mesopor. Mater. 143, 87-96. DOI: 10.1016/j.micromeso.2011.02.013.[Crossref][WoS]
  • 8. Chae, H.J., Song, Y.H., Jeong, K.E., Kim, C.U. & Jeong, S.Y. (2010). Physicochemical characteristics of ZSM-5/SAPO-34 composite catalyst for MTO reaction. J. Phys. Chem. Solids 71, 600-603. DOI: 10.1016/j.jpcs.2009.12.046.[Crossref][WoS]
  • 9. Svelle, S., Joensen, F., Nerlov, J., Olsbye, U., Lillerud, K.P., Kolboe, S. & Bjørgen, M. (2006). Conversion of methanol into hydrocarbons over zeolite H-ZSM-5: Ethene formation is mechanistically separated from the formation of higher alkenes. J. Am. Chem. Soc. 128, 14770-14771. DOI: 10.1021/ja065810a.[Crossref]
  • 10. Svelle, S., Olsbye, U., Joensen, F. & Bjorgen, M. (2007). Conversion of Methanol to Alkenes over Medium- and Large- Pore Acidic Zeolites: Steric Manipulation of the Reaction Intermediates Governs the Ethene/Propene Product Selectivity. J. Phys. Chem. C. 111, 17981-17984. DOI: 10.1021/jp077331j.[WoS][Crossref]
  • 11. Lee, Y.J., Kim, Y.W., Viswanadham, N., Jun, K.W. & Bae, J.W. (2010). Novel aluminophosphate (AlPO) bound ZSM-5 extrudates with improved catalytic properties for methanol to propylene (MTP) reaction. Appl. Catal. A: Gen. 374, 18-25. DOI: 10.1016/j.apcata.2009.11.019.[Crossref]
  • 12. Zhu, Q.J., Kondo, J.N., Setoyama, T., Yamaguchi, M., Domen, K. & Tatsumi, T. (2008). Activation of hydrocarbons on acidic zeolites superior selectivity of methylation of ethene with methanol to propene on weakly acidic catalysts. Chem. Commun. 0, 5164-5166. DOI: 10.1039/b809718f.[WoS][Crossref]
  • 13. Unneberg, E. & Kolboe, S. (1995). H-[B ]-ZSM-5 as catalyst for methanol reactions. Appl. Catal. A: Gen. 124, 345-354. DOI: 10.1016/0926-860X(95)00005-4.[Crossref]
  • 14. Sayed, M.B. & Védrine, J.C. (1986). The Effect of Modifi cation with Boron on the Catalytic Activity and Selectivity of HZSM-5 I. Impregnation with Boric Acid. J. Catal. 101, 43-55. DOI: 10.1016/0021-9517(86)90227-7.[Crossref]
  • 15. Yang, Y., Sun, C., Du, J., Yue, Y., Hua, W., Zhang, C., Shen, W. & Xu, H. (2012). The synthesis of endurable B- Al-ZSM-5 catalysts with tunable acidity for methanol to propylene reaction. Catal. Commun. 24, 44-47. DOI: 10.1016/j. catcom.2012.03.013.[WoS][Crossref]
  • 16. Argauer, R.J. & Landolt, G.R. (1972). U.S. Patent No. 3702886. Mobil Oil Corporation: U.S. Patent Offi ce.
  • 17. Svelle, S., Sommer, L., Barbera, K., Vennestrøm, P.N.R., Olsbye, U., Lillerud, K.P., Bordiga, S., Pan, Y.H. & Beato, P. (2011). How defects and crystal morphology control the effects of desilication. Catal. Today 168, 38-47. DOI: 10.1016/j. cattod.2010.12.013.[WoS][Crossref]
  • 18. Zhao, G.L., Teng, J.W., Xie, Z.K., Jin, W.Q., Yang, W.M., Chen, Q.L. & Tang, Y. (2007). Effect of phosphorus on HZSM-5 catalyst for C4-olefi n cracking reactions to produce propylene. J. Catal. 248, 29-37. DOI: 10.1016/j.jcat.2007.02.027.
  • 19. Zhou, W., Zhang, S.Y., Hao, X.Y., Guo, H., Zhang, C., Zhang, Y.Q. & Liu, S.X. (2006). MFI-type boroaluminosilicate A comparative study between the direct synthesis and the templating method. J. Solid State Chem. 179, 855-865. DOI: 10.1016/j.jssc.2005.12.013.[Crossref]
  • 20. Coudurier, G. & Vdrine, J.C. (1986). Catalytic and acidic properties of boron pentasil zeolites. Pure Appl. Chem. 58, 1389-1396. DOI: 10.1351/pac198658101389.[Crossref]
  • 21. Tenney, A.S. & Wong, J. (1972). Vibrational spectra of vapor-deposited binary borosilicate glasses. J. Chem. Phys. 56, 5516-5523. DOI: 10.1063/1.1677069.[Crossref]
  • 22. Wong, J. (1980). Differential infrared (DIR) studies of CVD borosilicate fi lms. J. Electrochem. Sot. 127, 62-67. DOI: 10.1149/1.2129640.[Crossref]
  • 23. Sayed, M.B., Auroux, A. & Védrine, J.C. (1989). The effect of boron on ZSM-5 zeolite shape selectivity and activity: II. Coincorporation of aluminium and boron in the zeolite lattice. J. Catal. 116, 1-10. DOI: 10.1016/0021-9517(89)90070-5.[Crossref]
  • 24. Jansen, J.C., Ruiter, R.D., Biron, E. & Bekkum, H.V. (1989). Isomorphous Substitution of Si in Zeolite Single Crystals. Part II. On The Boron Distribution and Coordination In [B]-ZSM-5. Stud. Surf. Sci. Catal. 49, 679-688. DOI: 10.1016/ S0167-2991(08)61766-8.[Crossref]
  • 25. Datka, J., Cichocki, A. & Piwowarska, Z. (1991). The Properties of Boralites of Various Boron Contents. Stud. Surf. Sci. Catal. 65, 681-688. DOI: 10.1016/S0167-2991(08)62952-3.[Crossref]
  • 26. Ruiter, R.d., Kentgens, A.P.M., Grootendorst, J., Jansen, J.C. & Bekkum, H.V. 1993. Calcination and deboronation of [B]-MFI single crystals. Zeolites 13, 128-138. DOI: 10.1016/0144-2449(93)90072-B.[Crossref]
  • 27. Dong, W.Y., Sun, Y.J., He, H.Y. & Long, Y.C. (1999). Synthesis and structural characterization of B-Al-ZSM-5 zeolite from boron-silicon porous glass in the vapor phase. Micropor. Mesopor. Mater. 32, 93-100. DOI: 10.1016/S1387-1811(99)00094-3.[Crossref]
  • 28. Reddy Marthala, V.R., Wang, W., Jiao, J., Jiang, Y., Huang, J. & Hunger, M. (2007). Effect of probe molecules with different proton affi nities on the coordination of boron atoms in dehydrated zeolite H-[B]ZSM-5. Micropor. Mesopor. Mater. 99, 91-97. DOI: 10.1016/j.micromeso.2006.07.034.[Crossref][WoS]
  • 29. Millini, R., Perego, G. & Bellussi, G. (1999). Synthesis and characterization of boron-containing molecular Sieves. TopicCatalysis 9, 13-34. DOI: 10.1023/A:1019198119365.[Crossref]
  • 30. Kaeding, W.W. & Butter, S.A. (1980). Production of chemicals from methanol: I. Low molecular weight olefi ns. J.
  • Catal. 61, 155-164. DOI: 10.1016/0021-9517(80)90351-6.[Crossref]
  • 31. Bjørgen, M., Svelle, S., Joensen, F., Nerlov, J., Kolboe, S., Bonino, F., Palumbo, L., Bordiga, S., & Olsbye, U. (2007). Conversion of methanol to hydrocarbons over zeolite H-ZSM- -5:On the origin of the olefi nic species. J. Catal. 249, 195-207. DOI: 10.1016/j.jcat.2007.04.006.[Crossref]
  • 32. Bjørgen, M., Joensen, F., Lillerud, K-P., Olsbye, U. & Svelle, S. 2009. The mechanisms of ethene and propene formation from methanol over high silica H-ZSM-5 and H-beta. Catal. Today 142, 90-97. DOI: 10.1016/j.cattod.2009.01.01 5 [WoS][Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0075
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.