Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 80-88
Article title

Investigations on the synthesis and properties of biodegradable poly(ester-carbonate-urea-urethane)s

Title variants
Languages of publication
A new method of the synthesis of oligo(tetramethylene succinate-co-carbonate) diols using dimethyl succinate, 1,4-butanediol and tetramethylene bis(methyl carbonate) was elaborated. The resultant oligomerols (Mn = 2600- 3700) were characterized by FTIR, 1H NMR, GPC and DSC analysis. Depending on the content of carbonate units in the polymer molecules, the melting point of the crystalline phase changes significantly. The synthesis of poly(ester-carbonate-urea-urethane)s was carried out with two aliphatic diisocyanates - cyclic IPDI or linear HDI. The resultant products exhibited very good mechanical properties - tensile strength up to 60 MPa and elongation at break about 500%. Preliminary studies confirmed that the presence of ester units in the soft segments as well as lack of crystalline phase significantly enhances the biodegradability of the PUR in comparison to that of polyurethanes based on carbonate oligomers.
Physical description
1 - 12 - 2013
31 - 12 - 2013
  • 1. Król, P. (2010). Linear Polyurethanes: Synthesis Methods,Chemical Structures, Properties and Applications. Brill E-Books, 2010, 25-44.
  • 2. Ionescu, M. (2008) Chemistry and Technology of Polyols forPolyurethanes. UK. Shawbury: Rapra Technology Ltd. 55-167.
  • 3. Delcroix, D., Martin-Vaca, B., Bourissou, D. & Navarro, C. (2010). Ring-opening polymerization of trimethylene carbonate catalyzed by methanesulfonic acid: activated monomer versus active chain end mechanisms. Macromolecules 43 (21), 8828-8835. DOI: 10.1021/ma101461y.[WoS][Crossref]
  • 4. Bruin, P., Veenstra, G.J., Nijenhuis, A.J. & Pennings, A.J. (1988). Design and synthesis of biodegradable poly(esterurethane) elastomer networks composed of non-toxic building blocks. Makromol. Chem. Rapid. Commun. 9 (8), 589-594. DOI: 10.1002/marc.1988.030090814.[Crossref]
  • 5. Fujimoto, K.L., Guan, J.J., Oshima, H., Sakai, T. & Wagner, W.R. (2007). In vivo evaluation of a porous, elastic, biodegradable patch for reconstructive cardiac procedures. Ann. Thorac. Surg. 83 (2), 648-654. DOI: 10.1016/j.athoracsur. 2006.06.085.[Crossref][WoS]
  • 6. Skarja, G.A. & Woodhouse, K.A. (1998). Synthesis and characterization of degradable polyurethane elastomers containing an amino acid-based chain extender. J. Biomater. Sci. Polymer Edn. 9 (3) 271-295. DOI:10.1163/156856298X00659.[Crossref]
  • 7. Pawłowski, P., Szymański, A., Kozakiewicz, J., Przybylski, J. & Rokicki, G. (2005). Poly(urethane-urea)s based on oligocarbonatediols comprising bis(carbamate)alkanes. Polymer J. 37 (10), 742-753. DOI: 10.1295/polymj.37.742.[Crossref]
  • 8. Pospiech, D., Komber, H., Jehnichen, D., Hussler, L., Eckstein, K., Scheibner, H., Janke, A., Kricheldorf, H.R. & Petermann, O. (2005). Multiblock copolymers of L-lactide and trimethylene carbonate. Biomacromolecules 6 (1), 439-446. DOI: 10.1021/bm049393a.[Crossref]
  • 9. Kricheldorf, H.R. & Rost, S. (2005). Biodegradable multiblock copolyesters prepared from -caprolactone, L-lactide, and trimethylene carbonate by means of bismuth hexanoate. Macromolecules 38 (20), 8220-8226. DOI: 10.1021/ma050439h.[Crossref]
  • 10. Yang, J., Liu, F., Yang, L. & Li, S. (2010). Hydrolytic and enzymatic degradation of poly(trimethylene carbonate-co-D,Llactide) random copolymers with shape memory behavior. Eur. Polym. J. 46 (4), 783-791. DOI: 10.1016/j.eurpolymj.2009.12.017.[Crossref]
  • 11. Yang, J., Tian, W., Li, Q., Li, Y. & Cao, A. (2004). Novel biodegradable aliphatic poly(butylene succinate-co-cyclic carbonate) s bearing functionalizable carbonate building blocks: II. Enzymatic biodegradation and in vitro biocompatibility assay.\ Biomacromolecules 5 (6), 2258-2268. DOI: 10.1021/bm049705+.[Crossref]
  • 12. Miura, M., Watanabe, H., Fujimori, T. & Isahaya, S. (1995). Jpn. Pat. JP07053695.
  • 13. Jiang, Z., Chen Liu, Ch. & Gross, R.A. (2008). Lipasecatalyzed synthesis of aliphatic poly(carbonate-co-esters). Macromolecules 41 (13), 4671-4680. DOI: 10.1021/ma702868a.[WoS][Crossref]
  • 14. Hong, Y., Guan, J., Fujimoto, K.L., Hashizume, R., Pelinescu, A.L. & Wagner, W.R. (2010). Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31 (15), 4249-4258. DOI: 10.1016/j.biomaterials.2010.02.005[Crossref][WoS]
  • 15. Sobczak, M., Dębek, C., Olędzka, E., Nałęcz-Jawecki, G., Kołodziejski, L.W. & Rajkiewicz, M. (2012). Segmented polyurethane elastomers derived from aliphatic polycarbonate and poly(ester-carbonate) soft segments for biomedical application. J. Polym. Sci. Part A 50 (18), 3904-3913. DOI: 10.1002/ pola.26190.[Crossref][WoS]
  • 16. Wang, J., Zheng, L., Li, C., Zhu, W., Zhang, D., Guan, G. & Xiao, Y. (2012). Synthesis and properties of multiblock copolymers ccomprising of poly(butylene succinate) and poly(butylene carbonate) by chain extension. Ind. Eng. Chem. Res. 51 (33), 10785-10792. DOI: 10.1021/ie300547g.[Crossref][WoS]
  • 17. Tomczyk, K.M., Parzuchowski, P.G., Kozakiewicz, J., Przybylski, J. & Rokicki, G. (2010). Synthesis of oligocarbonate diols from a “green monomer” - dimethyl carbonate - as soft segments for poly(urethane-urea) elastomers. Polimery 55 (5), 366-372.
  • 18. Fujimoto, K.L., Hashizume, R., Pelinescu, A.L. & Wagner, W.R. (2010). Tailoring the degradation kinetics of poly(ester carbonate urethane)urea thermoplastic elastomers for tissue engineering scaffolds. Biomaterials 31 (15), 4249-4258, DOI: 10.1016/j.biomaterials.2010.02.005.[Crossref][WoS]
  • 19. Howard, G.T. (2002). Biodegradation of polyurethane: a review. Int. Biodeter. Biodegrad. 49 (4), 245-252. DOI: 10.1016/ S0964-8305(02)00051-3. [Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.