Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 54-59

Article title

Optimization of rapeseed oil fatty acid esterification with methanol in the presence of sulfuric acid

Content

Title variants

Languages of publication

EN

Abstracts

EN
The interest in biodiesel production from low cost feedstocks is still increasing. Such feedstocks usually contain large amounts of free fatty acids, which make the currently employed base catalysts inefficient, thereby promoting the use of acid catalysts. Due to the high activity and low cost, sulfuric acid could become the most widely used acid catalyst for biodiesel production. Research undertaken so far using sulfuric acid for esterifi cation of fatty acids has shown that the products obtained fail to meet the requirements of the standard EN 14214. This paper describes a systematic study of rapeseed oil fatty acids esterification in order to obtain a product complying with the standard EN 14214. The influence of sulfuric acid concentrations (0.1-3.0%), methanol molar ratios (1:1-20:1) and reaction time (0-360 min) was evaluated. Finally, a two-stage esterification process was developed, where in optimal conditions esterification yield of 97.8% and ester content of 99.6% were achieved.

Publisher

Year

Volume

15

Issue

4

Pages

54-59

Physical description

Dates

published
1 - 12 - 2013
online
31 - 12 - 2013

Contributors

author
  • Riga Technical University, Institute of Applied Chemistry, 14/24 Azenes Str., Riga LV-1048, Latvia
  • Riga Technical University, Institute of Applied Chemistry, 14/24 Azenes Str., Riga LV-1048, Latvia
  • Riga Technical University, Institute of Applied Chemistry, 14/24 Azenes Str., Riga LV-1048, Latvia
  • Riga Technical University, Institute of Applied Chemistry, 14/24 Azenes Str., Riga LV-1048, Latvia
  • Riga Technical University, Institute of Applied Chemistry, 14/24 Azenes Str., Riga LV-1048, Latvia

References

  • 1. Qiu, F., Li, Y., Yang, D., Li, X. & Sun, P. (2011). Biodiesel production from mixed soybean oil and rapeseed oil. Appl. Energy. 88 (6), 2050-2055, DOI: 10.1016/j.apenergy.2010.12.070.[Crossref]
  • 2. Zhang. Y., Dubé, M.A., Mclean, C.C. & Kates, M. (2003). Biodiesel production from waste cooking oil: 2. economical assessment and sensitivity analysis. Bioresour. Technol. 90 (3), 229-240, DOI: 10.1016/S0960-8524(03)00150-0.[Crossref]
  • 3. Chongkhog, S., Tongurai, C., Chetpattananondh, P. & Bunyakan, C. (2007). Biodiesel production by esterifi cation of palm fatty acid distillate. Biomass Bioenergy. 31 (8), 563-568, DOI: 10.1016/j.biombioe.2007.03.001.[WoS][Crossref]
  • 4. Chakraborty, R. & Banerjee, A. (2010). Prediction of fuel properties of biodiesel produced by sequential esterifi cation and transesterifi cation of used frying soybean oil using statistical analysis. Waste Biomass Valorization. 1 (2), 201-208, DOI: 10.1007/s12649-010-9016-8.[Crossref]
  • 5. Dias, J.M., Ferraz, M.C.A. & Almeida, M.F. (2009). Production of biodiesel from acid waste lard. Bioresour. Technol. 100 (24), 6355-6361, DOI: 10.1016/j.biortech.2009.07.025.[Crossref]
  • 6. Wang, Z.M., Lee, J.S., Park, J.Y., Wu, C.Z. & Yuan, Z.H. (2008). Optimization of biodiesel production from trap grease via acid catalysis. Korean J. Chem. Eng. 25 (4), 670-674, DOI:10.1007/s11814-008-0110-6.[Crossref]
  • 7. Manosak, R., Limpattayanate, S. & Hunsom, M. (2011). Sequential-refi ning of crude glycerol derived from waste used- -oil methyl ester plant via a combined process of chemical and adsorption. Fuel Process. Technol. 92 (1), 92-99, DOI: 10.1016/j. fuproc.2010.09.002.[WoS][Crossref]
  • 8. Escobar, J.C., Lora, E.S., Venturini O.J., Yáñez, E.E., Castillo, E.F. & Almazan, O. (2009). Biofuels: Environment, technology and food security. Renewable Sustainable Energy Rev. 13 (6-7), 1275-1287, DOI: 10.1016/j.rser.2008.08.014.[Crossref]
  • 9. Sun, P., Sun, J., Yao, J., Zhang, L. & Xu, N. (2010). Continuous production of biodiesel from high acid value oils in microstructured reactor by acid-catalyzed reactions. Chem. Eng. J. 162 (1), 364-370, DOI: 10.1016/j.cej.2010.04.064.[Crossref]
  • 10. Maa, F. & Hanna, M.A. (1999). Biodiesel production: a review. Bioresour. Technol. 70 (1), 1-15, DOI: 10.1016/ S0960-8524(99)00025-5.[Crossref]
  • 11. Zhang,Y., Dubé, M.A., McLean, D.D. & Kates, M. (2003). Biodiesel production from waste cooking oil: 1. Process design and technological assessment. Bioresour. Technol. 89 (1), 1-16, DOI: 10.1016/S0960-8524(03)00040-3.[Crossref]
  • 12. Ahn, E., Koncar, M., Mittelbach, M. & Marr, R. (2006). A Low-Waste Process for the Production of Biodiesel. Sep. Sci. Technol. 30 (7-9), 2021-2033, DOI: 10.1080/01496399508010391.[Crossref]
  • 13. Sharma,Y.C., Singh, B. & Upadhyay, S.N. (2008).\ Advancements in development and characterization of biodiesel: A review. Fuel. 87 (12), 2355-2373, DOI: 10.1016/j. fuel.2008.01.014.[Crossref]
  • 14. Aranda, D., Santos, R., Tapanes, N., Ramos, A. & Auqusto, O. (2008). Acid-catalyzed homogeneous esterifi cation reaction for biodiesel production from palm fatty acids. Catal. Lett. 122 (1-2), 20-25, DOI: 10.1007/s10562-007-9318-z.[Crossref][WoS]
  • 15. Kastnera, J.R., Millera, J., Geller, D.P., Locklin, J., Keith, L.H. & Johnson, T. (2012). Catalytic esterifi cation of fatty acids using solid acid catalysts generated from biochar and activated carbon. Catal. Today. 190 (1), 122-132, DOI: 10.1016/j. cattod.2012.02.006.[Crossref]
  • 16. Gan, S., Ng, H.K., Ooi, C.W., Motala, N.O. & Ismail, M.F. (2010). Ferric sulphate catalysed esterifi cation of free fatty acids in waste cooking oil. Bioresour. Technol. 101 (19), 7338-7343, DOI: 10.1016/j.biortech.2010.04.028.[WoS][Crossref]
  • 17. He, L., Qin, S., Chang, T., Sun, Y. & Gao, X. (2013). Biodiesel synthesis from the esterifi cation of free fatty acids and alcohol catalyzed by long-chain Brønsted acid ionic liquid. Catal. Sci. Technol. 3, 1102-1107, DOI: 10.1039/C2CY20714A.[Crossref][WoS]
  • 18. Samios, D., Pedrotti, F., Nicolau, A., Reiznautt, Q.B., Martini, D.D. & Dalcin, F.M. (2009). A Transesterifi cation Double Step Process - TDSP for biodiesel preparation from fatty acids triglycerides. Fuel Process. Technol. 90 (4), 599-605, DOI: 10.1016/j.fuproc.2008.12.011.[WoS][Crossref]
  • 19. Ting, W.J., Huang, C.M., Giridhar, N. & Wu, W.T. (2008). An enzymatic/acid-catalyzed hybrid process for biodiesel production from soybean oil. J. Chin. Inst. Chem. Eng. 39 (3), 203-210, DOI: 10.1016/j.jcice.2008.01.004.[Crossref]
  • 20. Marchetti, J.M. & Errazu, A.F. (2008). Esterifi cation of free fatty acids using sulfuric acid as catalyst in the presence of triglycerides. Biomass Bioenergy. 32 (9), 892-895, DOI: 10.1016/j.biombioe.2008.01.001.[WoS][Crossref]
  • 21. Berrios, M., Siles, J., Martın, M.A. & Martın, A. (2007). A kinetic study of the esterifi cation of free fatty acids (FFA) in sunfl ower oil. Fuel. 86(15), 2383-2388, DOI: 10.1016/j. fuel.2007.02.002.[Crossref]
  • 22. Suwannakarn, K., Lotero, E., Ngaosuwan, K. & Goodwin Jr., J.G. (2009). Simultaneous free fatty acid esterifi cation and triglyceride transesterifi cation using a solid acid catalyst with in situ removal of water and unreacted methanol. Ind. Eng. Chem. Res. 48(6), 2810-2818, DOI: 10.1021/ie800889w.[Crossref][WoS]
  • 23. Pisarello, M.L., Costa, B.D., Mendow, G. & Querini, C.A. (2010). Esterifi cation with ethanol to produce biodiesel from high acidity raw materials: Kinetic studies and analysis of secondary reactions. Fuel Process. Technol. 91 (9), 1005-1014, DOI: 10.1016/j.fuproc.2010.03.001.[WoS][Crossref]
  • 24. Nakpong, P. & Wootthikanokkhan, S. (2010). High free fatty acid coconut oil as a potential feedstock for biodiesel production in Thailand. Renewable Energy. 35, 1682-1687, DOI: 10.1016/j.renene.2009.12.004.[Crossref]
  • 25. Parkara, P.A., Choudharyb, H.A. & Moholkara, V.S. (2012). Mechanistic and kinetic investigations in ultrasound assisted acid catalyzed biodiesel synthesis. Chem. Eng. J. 187, 248-260, DOI: 10.1016/j.cej.2012.01.074.[Crossref]
  • 26. Veljković, V.B., Lakićević, S.H., Stamenković, O.S., Todorović, Z.B. & Lazić, M.L. (2006). Biodiesel production from tobacco (Nicotiana tabacum L.) seed oil with a high content of free fatty acids. Fuel. 85 (17-18), 2671-2675, DOI: 10.1016/j. fuel.2006.04.015.[Crossref]
  • 27. Hayyan, A., Alam, Z., Mirghani, M., Kabbashi, N.A., Hakimi, N.I., Siran, Y.M. & Tahiruddin, S. (2011). Reduction of high content of free fatty acid in sludge palm oil via acid catalyst for biodiesel production. Fuel Process. Technol. 92 (5), 920-924, DOI: 10.1016/j.fuproc.2010.12.011.[WoS][Crossref]
  • 28. Che, F., Sarantopoulos, I., Tsoutsos, T. & Gekas, V. (2012). Exploring a promising feedstock for biodiesel production in Mediterranean countries: A study on free fatty acid esterifi - cation of olive pomace oil. Biomass Bioenergy. 36, 427-431, DOI: 10.1016/j.biombioe.2011.10.005.[WoS][Crossref]
  • 29. Santori, G., Nicola, G.D., Moglie, M. & Polonara, F. (2012). A review analyzing the industrial biodiesel production practice starting from vegetable oil refi ning. Appl. Energy. 92, 109-132, DOI: 10.1016/j.apenergy.2011.10.031.[Crossref]
  • 30. Ghadge, S.V. & Raheman, H. (2005). Biodiesel production from mahua (Madhuca indica) oil having. Biomass Bioenergy. 28 (6), 601-605, DOI: 10.1016/j.biombioe.2004.11.009. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0068
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.