Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 36-41

Article title

Effect of 1-substituted imidazole derivatives for the curing process of epoxy- -isocyanate composition

Content

Title variants

Languages of publication

EN

Abstracts

EN
The kinetics of the curing process of isocyanate-epoxy materials hardened in the presence of 1- substituted imidazole derivatives was studied by the Coast-Redfern method. The extent of a conversion parameter of the curing process in two ways was calculated: DSC (peak area integration) and rheology (viscosity changes). The activation energy values were determined for epoxy-isocyanate cured in the presence of 0.5; 1.0 and 2.0 phr 1-substituted imidazole derivatives respectively. Increasing of accelerators amount results in decreasing the activation energy and other kinetic parameters.

Publisher

Year

Volume

15

Issue

4

Pages

36-41

Physical description

Dates

published
1 - 12 - 2013
online
31 - 12 - 2013

Contributors

author
  • West Pomeranian University of Technology, Szczecin, Polymer Institute, Pulaskiego 10, 70-322 Szczecin, Poland
author
  • West Pomeranian University of Technology, Szczecin, Polymer Institute, Pulaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical Organic Technology, Pulaskiego 10, 70-322 Szczecin, Poland
author
  • 2West Pomeranian University of Technology, Szczecin, Institute of Chemical Organic Technology, Pulaskiego 10, 70-322 Szczecin, Poland

References

  • 1. Lee, H. & Neville, K. (2012). Epoxy Resins: Their Applications And Technology. Literary Licensing, LLC.
  • 2. Parodi, F. Post. (2007). Curing and high-performance isocyanate-epoxy FPR resin systems for structural composites and heavy-duty electrical/electromechanical applications. http://www.fpchem.com
  • 3. Koenig, R. & Gon, J. (1992). Epoxy terminated polyoxazolidones and process for the preparation thereof. US Pat. 5 112 932.
  • 4. Senger, J.S., Yilgor, I., McGrath, J.E. & Patsiga, R.A. (1989). Isocyanate-epoxy reactions in bulk and solution. J. Appl. Polym. Sci., 38, 373-382, DOI: 10.1002/app.1989.070380218.[Crossref]
  • 5. Caille, D., Pascault, J.P. & Tighzert, L. (1990). Reaction of a diepoxide with a diisocyanate in bulk. Polym. Bull., 24, 23-30.[Crossref]
  • 6. Caille, D., Pascault, J.P. & Tighzert, L. (1990). Reaction of a diepoxide with a diisocyanate in bulk. Polym. Bull., 24, 31-36.[Crossref]
  • 7. De Meuse, M.T., Gillham, J.K. & Parodi, F. (1997). Evolution of properties of an isocyanate/epoxy thermosetting system during cure: continuous heating (CHT) and izothermal time-temperature-transformation (TTT) cure diagrams. J. Appl. Polym. Sci., 64, 15-25, DOI: 10.1002/(SICI)1097- -4628(19970404)64:1<15::AID-APP2>3.0.CO;2-U.[Crossref]
  • 8. Sala, G. (2000). Impact behaviour of heat-resistant toughened composites. Composites Part B: Eng., 31, 161-173, DOI: http://dx.doi.org/10.1016/S1359-8368(00)00006-8.
  • 9. Ardenengo III, A.J. & Corcoron, P.H. (1991). Isocyanurate - crosslinked epoxy resin coatings containing imidazolethione catalysts. PCT Int. Appl. WO 91 189 937.
  • 10. Thermosetting adhesive and method of making some. (1998). PCT Int. Appl. WO 98 006 767.
  • 11. Barsotti, R.J., Harper, L.R. & Nordstrom J.D. (2002). Oligomeric epoxy/isocyanate systems. US Pat. 6 426 148.
  • 12. Pilawka, R. & Goracy, K. (2011). Investigations of curing process for epoxy-isocyanate compositions. Kompozyty, 11, 44-48.
  • 13. Pilawka, R. & Goracy, K. (2011). In: Monograph: Structural polymers and composites, Gliwice, 362-370.
  • 14. Pilawka, R. (2010). In: Monograph: Structural polymers and composites, Gliwice, 258-261 (in Polish).
  • 15. Dileone, R.R. (1970). Synthesis of poly-2-oxazolidones from diisocyanates and diepoxides. J. Polym. Sci., Part A, 8, 609-615, DOI: 10.1002/pol.1970.150080304.[Crossref]
  • 16. Speranza, G.P. & Peppe, W.J. (1958). Preparation of substituted 2-oxazolidones from 1,2-epoxides and isocyanates. J. Org. Chem., 23, 1992-1998.
  • 17. Vyazovkin, S., Burnham, A.K., Criado, J.M., Pérez-Maqueda, L.A., Popescu, C. & Sbirrazzuoli, N. (2011). ICTAC Kinetics Committee recommendations for performing kinetic computations on thermal analysis data. Thermochim. Acta., 520, 1-19, DOI:10.1016/j.tca.2011.03.034.[WoS][Crossref]
  • 18. Ozawa, T. (1965). A new method of analyzing thermogravimetric data. Bull. Chem. Soc. Jpn. 38, 1881-1886, DOI: 10.1246/bcsj.38.1881.[Crossref]
  • 19. Friedman, H.L. (1964). Kinetics of thermal degradation of char-forming plastics from thermogravimetry. Application to a phenolic plastic. J. Polym. Sci. Part C Polym. Symp. 6, 183-195, DOI: 10.1002/pol.1969.110070109.[Crossref]
  • 20. Kissinger, H.E. (1957). Reaction kinetics in differential thermal analysis. Anal. Chem. 21, 1702-1706, DOI: 10.1021/ ac60131a045.[Crossref]
  • 21. Wang, H., Yang, J., Long, S., Wang, X., Yang, Z. & Li, G. (2004). Studies on thermal degradation of poly (phenylene sulphide sulfone). Polym. Degrad. Stabil. 83, 229-235, DOI: 10.1016/S0141-3910(03)00266-0.[Crossref]
  • 22. Tonbul, Y. & Yurdakoc, K. (2007). Thermal behavior and pyrolysis of Avgamasya asphaltite Oil Shale 25, 547-560.
  • 23. Coats, A.W., Redfern, J.P. (1964). Kinetic Parameters from Thermogravimetric Data. Nature, 201, 68-69, DOI: 10.1038/201068a0.[Crossref]
  • 24. Criado, J.M., Malek, J. & Ortega, A. (1989). Applicability of the master plots in kinetic analysis of a non-isothermal rate. Thermochim. Acta., 147, 377-385, DOI: 10.1016/0040-6031(89)85192-5.[Crossref]
  • 25. Malek, J. (1992) The kinetic analysis of non-isothermal data. Thermochim. Acta., 200, 257-269, DOI: 10.1016/0040-6031(92)85118-F.[Crossref]
  • 26. Sbirrazzuoli, N., Girault, Y., Elegant, L. & Malek, J. (1995). Thermochim. Acta., 249, 179-187, DOI: 10.1016/0040-6031(95)90690-8.[Crossref]
  • 27. Senum, G.I. & Yang, R.T. (1977). Rational approximations of the integral of the Arrhenius function. J. Therm. Anal. Calorim. 11, 445-447; DOI: 10.1007/BF01903696.[Crossref]
  • 28. Simon, P. (2011). Fourty years of the Sesták-Berggren equation, Thermochim. Acta 520, 156-157, DOI: 10.1016/j. tca.2011.03.030. 29 Sesták, J. & Berggren, G. (1971). Study of the kinetics of the mechanism of solid-state reactions at increasing temperatures, Thermochim. Acta, 3, 1-12, http://dx.doi.org/10.1016/0040-6031(71)85051-7.[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0065
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.