Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 15-23

Article title

Synthesis and physicochemical characterization of silicafillers modified with octakis({3-methacryloxypropyl}dimethylsiloxy) octasilsesquioxane


Title variants

Languages of publication



Hybrid nanofillers of silica grafted with octakis({3-methacryloxypropyl}dimethylsiloxy) octasilsesquioxane were obtained by the method based on solvent evaporation with the use of both hydrated or emulsion spherical silica. Octakis({3-methacryloxypropyl}dimethylsiloxy) octasilsesquioxane was applied as a modifying agent and it was synthesized by employing the hydrosilylation reaction. The effectiveness of modification of the hybrid nanofillers obtained was verified using Fourier transform infrared spectroscopy and nuclear magnetic resonance (29Si and 13C CP MAS NMR). The products obtained were characterized by determination of their physicochemical properties and porous structure, including specific surface area, pore diameter and pore volume. Dispersion degree and particle size of the nanofillers was characterized by NIBS (Non-Invasive Back-scatter) method and laser diffraction technique, while their morphology by transmission electron microscopy.









Physical description


1 - 12 - 2013
31 - 12 - 2013


  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland
  • Adam Mickiewicz University, Faculty of Chemistry, Department of Organometallic Chemistry, Grunwaldzka 6, 60-780 Poznań, Poland
  • Center for Advanced Technologies of Wielkopolska Region – WCZT, Umultowska 89, 61-614 Poznań, Poland
  • Poznan University of Technology, Faculty of Chemical Technology, Institute of Chemical Technology and Engineering, M. Skłodowskiej-Curie 2, 60-965 Poznań, Poland


  • 1. dell’Erba, I.E. & Williams, R.J.J. (2007). Synthesis of oligomeric silsesquioxanes functionalized with (b-carboxyl)ester groups and their use as modifi ers of epoxy networks. Eur. Polym. J. 43(7), 2759-2767. DOI: 10.1016/j.eurpolymj.2007.04.017.[Crossref][WoS]
  • 2. Kawakami, Y., Kakihana, Y., Miyazato, A., Tateyama, S. & Hoque, Md.A. (2011). Polyhedral oligomeric silsesquioxanes with controlled structure: formation and application in new Si-based polymer systems. Adv. Polym. Sci. 235, 185-228. DOI: 10.1007/12_2010_55.[Crossref][WoS]
  • 3. Zou, Q., Zhang, L., Li, S., Gao, X. & Deng, F. (2011). A solid-state NMR study of structure and segmental dynamics of poly(propylmethacryl-heptaisobutyl-pss)-co-styrene nanocomposites. J. Coll. Int. Sci. 355(2), 334-341. DOI: 10.1016/j. jcis.2010.12.044.[Crossref]
  • 4. Zhang, W., Li, X., Guo, X. & Yang, R. (2010). Mechanical and thermal properties and fl ame retardancy of phosphoruscontaining polyhedral oligomeric silsesquioxane (DOPOPOSS)/ polycarbonate composites. Polym. Degrad. Stab. 95(12), 2541-2546. DOI: 10.1016/j.polymdegradstab.2010.07.036.[Crossref]
  • 5. Lee, A. & Lichtenhan, J.D. (1998). Viscoelastic responses of polyhedral oligosilsesquioxane reinforced epoxy systems. Macromolecules 31(15), 4970-4974. DOI: 10.1021/ma9800764.[Crossref][PubMed]
  • 6. Gunji, T., Shioda, T., Tsuchihira, K., Seki, H., Kajiwara, T. & Abe, Y. (2009). Preparation and properties of polyhedral oligomeric silsesquioxane-polysiloxane copolymers. Appl. Organometal. Chem. 24(8), 545-550. DOI: 10.1002/aoc.1562.[WoS][Crossref]
  • 7. Schütz, M.R., Sattler, K., Deeken, S., Klein, O., Adasch, V., Liebscher, Ch.H., Glatzel, U., Senker, J. & Breu, J. (2010). Improvement of thermal and mechanical properties of a phenolic resin nanocomposite by in situ formation of silsesquioxanes from a molecular precursor. J. Appl. Polym. Sci. 117(4), 2272-2277. DOI: 10.1002/app.32004.[Crossref][WoS]
  • 8. Markovic, E., Clarke, S., Matisons, J. & Simon, G.P. (2008). Synthesis of POSS-methyl methacrylate-based crosslinked hybrid materials. Macromolecules. 41(5), 1685-1692. DOI: 10.1021/ma702103z.[WoS][Crossref]
  • 9. Liu, Y.L., Tseng, M.C. & Fangchiang, M.H. (2008). Polymerization and nanocomposites properties of multifunctional methylmethacrylate POSS. J. Polym. Sci., Part A: Polym. Chem. 46(15), 5157-5166. DOI: 10.1002/pola.22843.[Crossref]
  • 10. Zhang, W., Fu, B.X., Seo, Y., Schrag, E., Hsiao, B., Mather, P.T., Yang, N.L., Xu, D., Ade, H., Rafailovich, M. & Sokolov, J. (2002). Effect of methyl methacrylate/polyhedral oligomeric silsesquioxane random copolymers in compatibilization of polystyrene and poly(methyl methacrylate) blends. Macromolecules 35(21), 8029-8038. DOI: 10.1021/ma020725i.[Crossref]
  • 11. Koh, K., Sugiyama, S., Morinaga, T., Ohno, K., Tsujii, Y., Fukuda, T., Yamahiro, M., Iijima, T., Oikawa, H., Watanabe, K. & Miyashita, T. (2005). Precision synthesis of a fl uorinated polyhedral oligomeric silsesquioxane-terminated polymer and surface characterization of its blend fi lm with poly(methyl methacrylate). Macromolecules 38(4), 1264-1270. DOI: 10.1021/ma047636l.[Crossref]
  • 12. Costa, R.R., Vasconcelos, W.L., Tamaki, R., & Laine, R.M. (2001). Organic/inorganic nanocomposite star polymers via atom transfer radical polymerization of methyl methacrylate using octafunctional silsesquioxane cores. Macromolecules 34(16), 5398-5407. DOI: 10.1021/ma010814f.[Crossref]
  • 13. Ohno, K., Sugiyama, S., Koh, K., Tsujii, Y., Fukuda, T., Yamahiro, M., Oikawa, H., Yamamoto, Y., Ootake, N. & Watanabe, K. (2004). Living radical polymerization by polyhedral oligomeric silsesquioxane-holding initiators: precision synthesis of tadpole-shaped organic/inorganic hybrid polymers. Macromolecules 37(23), 8517-8522. DOI: 10.1021/ma048877w.[Crossref]
  • 14. Toepfer, O., Neumann, D., Choudhury, N.R., Whittaker, A. & Matisons, J. (2005). Organic-inorganic poly(methyl methacrylate) hybrids with confi ned polyhedral oligosilsesquioxane macromonomers. Chem. Mater. 17(5), 1027-1035. DOI: 10.1021/ cm048622x.[Crossref]
  • 15. Zou, Q.C., Zhang, S.L., Tang, Q.Q., Wang, S.M. & Wu, L.M. (2006). Surface characterization of poly(methyl methacrylate-co-n-butyl acrylate-co-cyclopentylstyryl-polyhedral oligomeric silsesquioxane) by inverse gas chromatography.J. Chromatogr. A. 1110(1-2), 140-145. DOI: 10.1016/j.chroma. 2006.01.052.[Crossref]
  • 16. Amir, N., Levina, A. & Silverstein, M.S. (2007). Nanocomposites through copolymerization of a polyhedral oligomeric silsesquioxane and methyl methacrylate. J. Polym. Sci. Part APolym. Chem. 45(18), 4264-4275. DOI: 10.1002/pola.22168.[WoS][Crossref]
  • 17. Zhao, Ch., Yang, X.J., Wu, X.D., Liu, X.H., Wang, X. & Lu, L.D. (2008). Preparation and characterization of poly(methyl methacrylate) nanocomposites containing octavinyl polyhedral oligomeric silsesquioxane. Polym. Bulletin. 60(4), 495-505. DOI: 10.1007/s00289-008-0887-9.[WoS][Crossref]
  • 18. Downs, T.R. & Palmer, D.C. (1994). The pressure behavior of α-cristobalite. Am. Mineral. 79(2), 9-14.
  • 19. Jesionowski, T., Żurawska, J. & Krysztafkiewicz, A. (2002). Surface properties and dispersion behaviour of precipitated silicas. J. Mater. Sci. 34(8), 1621-1633. DOI: 10.1023/A:1014936428636.[Crossref]
  • 20. Wang, L., Major, D., Paga, P., Zhang, D., Norton, M.G. & McIlroy, D.N. (2006). High yield synthesis and lithography of silica-based nanospring mats. Nanotechnology. 17(11), 298-303. DOI: 10.1088/0957-4484/17/11/S12.[Crossref]
  • 21. Ehrlich, H., Deutzmann, R., Brunner, E., Cappellini, E., Koon, H., Solazzo, C., Yang, Y., Ashford, D., Thomas-Oates, J., Lubeck, M., Baessmann, C., Langrock, T., et al. (2010). Mineralization of the metre-long biosilica structures of glass sponges is templated on hydroxylated collagen, Nature Chem. 2(12), 1084-1088. DOI: 10.1038/nchem.899.[WoS][Crossref]
  • 22. Ehrlich, H. (2010). Biological Materials of Marine Origin. Invertebrates, Springer.
  • 23. Dutkiewicz, M., Maciejewski, H. & Marciniec, B. (2009). Functionalization of polyhedral oligomeric silsesquioxane (POSS) via nucleophilic substitution, Synthesis 12, 2019-2024. DOI: 10.1055/s-0029-1216807.[Crossref]
  • 24. Wang, J.C., Zhan, C.Z. & Li, F.G. (2003). The synthesis of silica nanowire arrays. Solid State Commun. 125(39), 629-631. DOI: 10.1016/S0038-1098(03)00034-6.[Crossref]
  • 25. Bhagiyalakshmi, M., Anuradha, R., Do, Park, S. & Tae, H., (2010). Octa(aminophenyl)silsesquioxane fabrication on chlorofunctionalized mesoporous SBA-15 for CO2 adsorption. Microp. Mesop. Mater. 131(1-3), 265-273. DOI: 10.1016/j. micromeso.2010.01.001.
  • 26. Carniato, F., Bisio, Ch., Boccaleri, E., Guidotti, M., Gavrilova, E. & Marchese, L. (2008). Titanosilsesquioxane anchored on mesoporous silicas: A novel approach for the preparation of heterogeneous catalysts for selective oxidations.Chem. Eur. J. 14(27), 8098-8101. DOI: 10.1002/chem.200801241.[Crossref][WoS]
  • 27. Filho, N.L.D., de Aquino, H.A., Pires, G., Caetano, L. (2006). Relationship between the dielectric and mechanical properties and the ratio of epoxy resin to hardener of the hybrid thermosetting polymers. J. Braz. Chem. Soc. 17(3), 533-541. DOI: 10.1590/S0103-50532006000300016.[Crossref]
  • 28. Szwarc, K., Siwińska-Stefańska, K., Marciniec, B. & Jesionowski, T. (2012). Synthesis and characterization of SiO2/POSS hybrid systems obtained using the mechanical method. Physicochem. Probl. Miner. Process. 48(1), 181-192.
  • 29. Jesionowski, T., Krysztafkiewicz, A., Pokora, M., Waszak, D. & Tylus, W. (2003). Physicochemical and morphological properties of hydrated silicas precipitated following alkoxysilane surface modifi cation. Appl. Surf. Sci. 205(1-4), 212-224. DOI: 10.1016/S0169-4332(02)01090-5.[Crossref]
  • 30. Jesionowski T. (2009). Preparation of spherical silica in emulsion systems using the co-precipitation technique. Mater. Chem. Phys. 113(2-3), 839-849. DOI: 10.1016/j.matchemphys. 2008.08.067.[Crossref][WoS]
  • 31. Szwarc-Rzepka, K., Ciesielczyk, F., Zawisza, M., Kaczmarek, M., Dutkiewicz, M., Marciniec, B., Maciejewski, H. & Jesionowski, T. (2012). Synthesis of hepta(isobuthyl)ethyltriethoxysilyl octasilsesquioxane and its application as a modifi er of both hydrated and emulsion silicas. Physicochem. Probl.Miner. Process. 48(2), 619−630. DOI: 10.5277/ppmp120225.[Crossref]
  • 32. Hong, R.Y., Fu, H.P., Zhang, Y.J., Liu, L., Wang, J., Li, H.Z. & Zheng, Y. (2007). Surface-modifi ed silica nanoparticles for reinforcement of PMMA, J. Appl. Polym. Sci. 105(4), 2176-2184. DOI: 10.1002/app.26164.[Crossref]
  • 33. Qin, Y., Bi, Y., Ren, H., Zhu, F., Luo, M. & Zhang, L. (2010). Poly(methyl methacrylate)/methacryl-POSS nanocomposites with excellent thermal properties, Chin. J. Chem. 28(12), 2527-2532. DOI: 10.1002/cjoc.201190033.[Crossref]
  • 34. Arkles, B. (2001). Commercial applications of solgel- derivated hybrid materials. MRS Bull. 26(5), 402-408. DOI: 10.1557/mrs2001.94.[Crossref]
  • 35. Cypryk, M. (2007). Zastosowanie spektroskopii 29Si NMR do badań polimerów krzemoorganicznych. Polimery. 52(10), 730-735.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.