Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 4 | 5-9
Article title

Removal of low molecular organic acids from aqueous solutions with reactive extraction

Title variants
Languages of publication
This paper presents investigation on removal of low molecular organic acids (acetic, lactic, succinic and fumaric) from aqueous solutions with reactive extraction. The results specifically show that the extraction efficiency of acids depends on the type of extractant, diluents of the organic phase and the initial pH of the aqueous phase. It is possible to separate succinic or fumaric from lactic and acetic acids with high selectivity with the use of TOA and Aliquat 336, respectively. Increasing the pH of the aqueous phase results in a reduction of fumaric acid extraction efficiency with solvating extractants. This can be explained by the decreasing share of acidic form, whose extraction is favored by these extractants. Efficient extraction of both fumaric acid and fumarate using Aliquat 336 can be explained by the ionic structure of the quaternary ammonium salt, capable of transporting both forms of the acid.
Physical description
1 - 12 - 2013
31 - 12 - 2013
  • 1. Vlysidis, A., Binns, M., Webb, C. & Theodoropoulos, C. (2011). Glicerol utylisation for the production of chemicals: Conversion to succinic acid, a combined experimental and computational study. Biochem. Eng. J. 58 (59), 1-11, DOI: 10.1016/j. bej.2011.07.004.[Crossref][WoS]
  • 2. Melcer, A., Klugmann-Radziemska, E., Ciunel, K. (2011). Zagospodarowanie fazy glicerynowej z produkcji biopaliw. Arch. Gospod. Odp. i Ochr. Śr. 13, 1-20, ISNN 1733-4381.
  • 3. Kośmider, A. & Czaczyk, K. (2009). Perspektywy wykorzystania glicerolu w procesach biotechnologicznych. Post. Microbiol. 48, 277-287, ISSN 0079-4252.
  • 4. Kumar, S. & Babu, B.V. (2008). Process intensifi cation for separation of carboxylic acids from fermentation broths using reactive extraction. J. Fut. Eng. Technol. 3, 19-26.
  • 5. Kumar, S. & Babu, B.V. (2008). Separation of carboxylic acids from waste water via reactive extraction. in international proceedings of convention on water resources development and management (ICWRDM), 23-26 October 2008 (p 1-9). BITS Pilani, India.
  • 6. Hartl, J. & Marr, R. (1993). Extraction processes for bioproduct separation. Sep. Sci. Technol. 28, 805-819, DOI: 10.1080/01496399308019522.[Crossref]
  • 7. Wiśniewski, M. & Pierzchalska, M. (2006). Ekstrakcyjne usuwanie kwasów karboksylowych z odpadowych roztworów wodnych. Przem. Chem. 85, 8-9, ISSN 0033-2496.
  • 8. Kertes, A.S. & King, J. (2009). Extraction chemistry of fermentation product carboxylic acids. Biotechnol. Bioeng. 103, 432-444, DOI: 10.1002/bit.22375.[Crossref]
  • 9. Cascaval, D., Postaru, M., Galaction, A.I., Kloetzer, L. & Blaga, A.C. (2013). Fractionation of carboxylic acids mixture obtained by P. acidiprpionici fermentation using pertraction with tri-n-octylamine and 1-octanol. Ind. Eng. Chem. Res. 52, 2685-2692, DOI: 10.1021/ie302339z.[Crossref][WoS]
  • 10. Galaction, A.I., Carlescu, A., Turnea, M. & Cascaval, D. (2012). Direct extraction of propionic acid from Propionibacteriumadidipropionici broths with tri-n-octylamine. Chem. Eng. Technol. 35 (9), 1657-1663, DOI: 10.1002/ceat.201200066.[WoS][Crossref]
  • 11. Kyuchoukov, G., Morales, A.F., Albet, J., Malmary, G. & Moinier, J. (2008). On the possibility of predicting the extraction of dicarboxylic acids with tributylphosphate dissolved in a diluent. J. Chem. Eng. Data 53, 639-647, DOI: 10.1021/je700356y.[Crossref][WoS]
  • 12. Zhang, L., Yu, F., Chang, Z., Gua, Y. & Li, D. (2012). Extraction equilibria of picolinic acid with trialkylamine/n-octanol. J. Chem. Eng. Data 57, 577-581, DOI: 10.1021/je201314m.[Crossref][WoS]
  • 13. Datta, D. & Kumar, S. (2013). Reactive extraction of pyridine carboxylic acids with N, N-dioctyloctan-1-amine: experimental and theoretical studies. Sep. Sci. Technol. 48 (6), 898-908, DOI: 10.1080/01496395.2012.712591.[WoS][Crossref]
  • 14. Tamada, J.A. & King, C.J. (1990). Extraction of carboxylic acids with amine extractants. 1. Equilibria and law of mass action modeling. Ind. Eng. Chem. Res. 29, 1319-1326, DOI: 10.1021/ie00103a035.[Crossref]
  • 15. Hano, T., Matsumoto, M., Ohtake, T., Sasaki, K., Hori, F. & Kawano, Y. (1990). Extraction equilibria of organic acids with tri-n-octylphosphineoxide. J. Chem. Eng. Jpn 23 (6), 734-738, DOI: 10.1252/jcej.23.734.[Crossref]
  • 16. Hansch, C., Leo, A. & Hoekman, D. (1995). Exploring QSAR - Hydrophobic, Electronic, and Steric Constants. Washington, DC: American Chemical Society, ISBN: 0841229872; 0841229880; 0841229937.
  • 17. Bizek, V., Horacek, J., Rericha, R. & Kousova, M. (1992). Amine extraction of hydroxycarboxylic acids. 1. Extraction of citric acid with 1-octanol/n-heptane solutions of trialkylamine. Ind. Eng. Chem. Res. 31, 1554-1562, DOI: 10.1021/ie00006a019.[Crossref]
  • 18. Tamada, J.A. & King, C.J. (1990). Extraction of carboxylic acids with amine extractants. 2. Chemical interactions and interpretation of data. Ind. Eng. Chem. Res. 29, 1327-1333, DOI: 10.1021/ie00103a036. [03.2013].[Crossref]
  • 19. Almeida, J.R.M., Fávaro, L.C.L. & Quirino, B.F. (2012). Biodiesel biorefi nery: opportunities and challenges for microbial production of fuels and chemicals from glycerol waste. Biot. Biof. 5, 48-64. DOI: 10.1186/1754-6834-5-48. [Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.