Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 85-90

Article title

Complexation of poly(ethylene glycol) with poly(ethyl methacrylate-co-N-vinyl-2-pyrrolidone) gel based on hydrogen bonds

Authors

Content

Title variants

Languages of publication

EN

Abstracts

EN
The complexes of poly(ethyl methacrylate-co-N-vinyl-2-pyrrolidone) (P(EMA-co-VP)) gel with poly- (ethylene glycol) (PEG) stabilized by the hydrogen bonds were prepared. It was found that both the concentration and the molecular weight of PEG have a strong effect on the P(EMA-co-VP) gel. When PEG was introduced into the P(EMA-co-VP) gel, the glass transition temperatures (Tg) of the complexes decreases with the decreasing of PEG molecular weight. In such a system, the maximum molecular weight of PEG required for the complex formation is no more than 2000, and P(EMA-co-VP)/PEG complexes are a homogeneous amorphous phase, which was studied by FTIR, XRD, TEM, and DSC.

Publisher

Year

Volume

15

Issue

3

Pages

85-90

Physical description

Dates

published
1 - 09 - 2013
online
20 - 09 - 2013

Contributors

author
  • University of Technology, College of Material Science and Engineering, Zhengzhou, 450007, China

References

  • 1. Peppas, N. A., Hilt, J., Khademhosseini, Z.A. & Langer, R. (2006). Hydrogels in biology and medicine: From molecular principles to bionanotechnology, Adv. Mater. 18, 1345-1360. DOI: 10.1002/adma.200501612.[Crossref]
  • 2. Gil, E.S. & Hudson, S.M. (2004). Stimuli-responsive polymers and their bioconjugates, Prog. Polym. Sci. 29, 1173-1222. DOI: 10.1016/j.progpolymsci.2004.08.003.[Crossref][WoS]
  • 3. Soppimath, K.S., Liu, L.H. & Seow, W.Y., et al. (2007). Multifunctional core/shell nanoparticles self-assembled from pH-induced thermosensitive polymers for targeted intracellular anticancer drug delivery, Adv. Funct. Mater. 17, 355-362. DOI: 10.1002/adfm.200500611.[Crossref][WoS]
  • 4. Don, T.M., Huang, M.L., Chiu, A.C., Kuo, K.H., Chiu, W.Y. & Chiu, L.H. (2008). Preparation of thermo-responsive acrylic hydrogels useful for the application in transdermal drug delivery systems, Mater. Chem. Phys. 107, 266-273. DOI: 10.1016/j.matchemphys.2007.007.009.[Crossref]
  • 5. Dimitrov, I., Trzebicka, B., Müllerc, H.E., Dworak, A. & Tsvetanova, C.B. (2007). Thermosensitive water-soluble copolymers with doubly responsive reversibly interacting entities, Prog. Polym. Sci. 32, 1275-1343. DOI: 10.1016/j.progpolymsci.2007.07.001.[Crossref][WoS]
  • 6. Chen, K.S., Ku, Y.A. & Lin, H.R., et al. (2005). Preparation and characterization of pH-sensitive poly (N-vinyl-2-pyrrolidone/ itaconic acid) copolymer hydrogels, Mater. Chem. Phys. 91, 484-489. DOI: 10.1016/j.matchemphys.2004.12.037.[Crossref]
  • 7. Lee, K.Y. & Mooney, D.J. (2001). Hydrogels for tissue engineering, Chem. Rev. 101, 1869-1880. DOI: 10.1021/cr000108x.[WoS][Crossref]
  • 8. Khutoryanskiy, V.V., Mun, G.A., Nurkeeva, Z.S. & Dubolazov, A.V. (2004). pH and salt effects on interpolymer complexation via hydrogen bonding in aqueous solutions, Polym. Int. 53, 1382-1387. DOI: 10.1002/pi.1549.[Crossref]
  • 9. Akira, M., Takeyuki, K., Daijiro, S. & Kazunori, K. (2004). Swelling and shrinking kinetics of totally synthetic, glucose-responsive polymer gel bearing phenylborate derivative as a glucose-sensing moiety, Macromolecules, 37, 1502-1510. DOI: 10.1021/ma035382i.[Crossref]
  • 10. Yeghiazarian, L., Mahajan, S., Montemagno, C., Cohen, C. & Wiesner, U. (2005). Directed motion and cargo transport through propagation of polymer-gel volume phase transitions, Adv. Mater. 17, 1869-1873. DOI: 10.1002/adma.200401205.[Crossref]
  • 11. Hideya, K., Shigeo S. & Hiroshi, M. (1997). Effect of pH on the volume phase transition of copolymer gels of Nisopropylacrylamide and sodium acrylate, J. Phys. Chem. 101, 5089-5093. DOI: 10.1021/jp962809x.[Crossref]
  • 12. Lowman, A.M. & Peppas, N.A. (2000). Molecular analysis of interpolymer complexation in graft copolymer networks, Polymer, 41, 73-80. DOI: 10.1016/S0032-3861(99)00159-7.[Crossref]
  • 13. Bekturov, E.A., Frolova, V.A. & Mamytbekov, G.K. (2000). Formation-destruction conditions of an interpolymer complex between a poly(acrylic acid) gel and linear poly(ethylene glycol) in methanol, Macromol. Chem. Phys. 201, 1031-1036. DOI: 10.1002/1521-3935(20000601).[Crossref]
  • 14. Lowman, A.M., Cowans, B.A. & Peppas, N.A. (2000). Investigation of interpolymer complexation in swollen poly-electroyte networks by solid state NMR spectroscopy, J. Polym. Sci., Part B: Polym. Phys. 38, 2823-2831. DOI: 10.1002/1099-0488(20001101).[Crossref]
  • 15. Feldstein, M.M., Shandryuk, G.A. & Platé, N.A. (2001). Relation of glass transition temperature to the hydrogenbonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers. Part 1. Effects of hydroxyl group number in plasticizer molecule, Polymer. 42, 971-979. DOI: 10.1016/S0032-3861(00)00445-6.[Crossref]
  • 16. Feldstein, M.M., Kuptsov, S.A., Shandryuk, G.A. & Platé, N.A. (2001). Relation of glass transition temperature to the hydrogen-bonding degree and energy in poly(N-vinyl pyrrolidone) blends with hydroxyl-containing plasticizers. Part 2. Effects of poly(ethylene glycol) chain length, Polymer. 42, 981-990. DOI: 10.1016/S0032-3861(00)00439-0.[Crossref]
  • 17. Novikov, Roos, M.A., Creton, C. & Feldstein, M. (2003). Dynamic mechanical and tensile properties of poly (N-vinyl pyrrolidone)-poly (ethylene glycol) blends, Polymer. 44, 3561-3578. DOI: 10.1016/S0032-3861(03)00132-0.[Crossref]
  • 18. Sengwa, R.J. (2003). Microwave dielectric relaxation and molecular dynamics in binary mixtures of poly(vinyl pyrrolidone)- poly(ethylene glycol)s in non-polar solvent, Polym. Int. 52, 1462-1467. D OI: 10.1002/pi.1244.
  • 19. Lü, T. & Shan, G. (2009). Mec hanism of the droplet formation and stabilization in the aqueous two-phase polymerization of acrylamide, J. Appl. Polym. Sci. 112, 2859-2867. DOI: 10.1002/app.29782.[Crossref][WoS]
  • 20. Shan, G. & Cao, Z.H. (2009). A new polymerization method and kinetics for acrylamide: Aqueous two-phase polymerization, J. Appl. Polym. Sci. 111, 1409-1416. DOI: 10.1002/app.29167.[Crossref]
  • 21. Chen, D., Liu, X., Yue, Y., Zhang, W. & Wang, P. (2006). Dispersion copolymerization of acrylamide with quaternary ammonium cationic monomer in aqueous salts solution, Eur. Polym. J. 42, 1284-1297. DOI: 10.1016/j.eurpolymj.2005.12.007.[Crossref]
  • 22. Song, B.K., Cho, M.S., Yoon, K.J., Lee, D.C. (2003). Dispersion polymerization of acrylamide with quaternary ammonium cationic comonomer in aqueous solution, J. Appl. Polym. Sci. 87, 1101-1108. DOI: 10.1002/app.11559.[WoS][Crossref]
  • 23. Cho, M.S., Yoon, K.J. & Song, B.K. (2002). Dispersion polymerization of acrylamide in aqueous solution of ammonium sulfate: Synthesis and characterization, J. Appl. Polym. Sci. 83, 1397-1405. DOI: 10.1002/app.2300.[Crossref]
  • 24. Working, P.K., Newman, M.S., Johnson, J. & Cornacoff, J.B. (1997). Safety of poly(ethylene glycol) and poly(ethylene glycol) derivatives. in J.M. Harris & S. Zalipsky (Eds.), Poly(ethylene glycol): chemistry and biological applications ACSSymposium Series (No 680, pp. 45-57). American Chemical Society, Washington DC.
  • 25. Cesteros, L., Quintana, J., Fernandez, J. & Katime, I. (1989). Miscibility of poly(ethylene oxide) with poly(N-vinyl pyrrolidone): DMTA and DTA studies, J. Polym. Sci., Part B:Polym. Phys. 27, 2567-2576. DOI: 10.1002/polb.1989.090271301.[Crossref]
  • 26. Philippova, O.E., Karybiants, N.S. & Starodubtzev, S.G. (1994). Conformational changes of hydrogels of poly(methacrylic acid) iInduced by interaction with poly(ethylene glycol), Macromolecules, 27, 2398-2401. DOI: 10.1021/ma00087a006.[Crossref]
  • 27. Liu, S.X., Fang, Y. Hu, D. & Gao, G. (2001). Complexation between poly(methacrylic acid) and poly(vinylpyrrolidone), J. Appl. Polym. Sci. 82, 620-627. DOI: 10.1002/app.1890.[Crossref]
  • 28. Karybiants, N.S., Philippova, O.E., Starodubtzev, S.G. & Khokhlov, A.R. (1996). Conformational transitions in poly(methacrylic acid) gel/poly(ethylene glycol) complexes. Effect of the gel cross-linking density, Macromol. Chem. Phys. 197, 2373-2378. DOI: 10.1002/macp.1996.021970801.[Crossref]
  • 29. Zhou, S. Q., Burger, C., Yeh, F., Chu, B. (1998). Charge density effect of polyelectrolyte chains on the nanostructures of polyelectrolyte−surfactant complexes, Macromolecules 31, 8157-8163. DOI: 10.1021/ma9810058.[Crossref]
  • 30. Bekturov, E.A., Frolova, V.A. & Bimendina, L.A. (1999). Swelling behaviour of a non-ionic poly(N-vinyl-2-pyrrolidone) gel in a linear poly(acrylic acid) solution, Macromol. Chem. Phys. 200, 431-435. DOI: 10.1002/(SICI)1521-3935(19990201)200:2<431::AID-MACP431>3.0.CO;2-Q.[Crossref]
  • 31. Kuo, S.W. & Chang, F.C. (2001). Miscibility and hydrogen bonding in blends of poly(vinylphenol-co-methyl methacrylate) with poly(ethylene oxide), Macromolecules 34, 4089-4097. DOI: 10.1021/ma010047k. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0051
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.