PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 35-41
Article title

Adsorption of Zn(II) ions from aqueous environment by surface modified Strychnos potatorum seeds, a low cost adsorbent

Content
Title variants
Languages of publication
EN
Abstracts
EN
The surface modified Strychnos potatorum seeds (SMSP), an agricultural waste has been developed into an effective adsorbent for the removal of Zn(II) ions from aqueous environment. The Freundlich model provided a better fit with the experimental data than the Langmuir model as revealed by a high coefficient of determination values and low error values. The kinetics data fitted well into the pseudo-second order model with the coefficient of determination values greater than 0.99. The influence of particle diffusion and film diffusion in the adsorption process was tested by fitting the experimental data with intraparticle diffusion, Boyd kinetic and Shrinking core models. Desorption experiments were conducted to explore the feasibility of regenerating the spent adsorbent and the adsorbed Zn(II) ions from spent SMSP was desorbed using 0.3 M HCl with the efficiency of 93.58%. The results of the present study indicates that the SMSP can be successfully employed for the removal of Zn(II) ions from aqueous environment.
Publisher
Year
Volume
15
Issue
3
Pages
35-41
Physical description
Dates
published
1 - 09 - 2013
online
20 - 09 - 2013
References
  • 1. Bureau of Indian Standards (BIS). (1994). Methods of sampling and test (physical and chemical) for water and waste water: Part 49 Zinc, IS No. 3025 (Part 49).
  • 2. Nuhoglu, Y. & Malkoc, E. (2009). Thermodynamic and kinetic studies for environmentaly friendly Ni(II) biosorption using waste pomace of olive oil factory. Bioresour. Technol. 100, 2375-2380. DOI: 10.1016/j.biortech.2008.11.016.[Crossref][WoS]
  • 3. Ofomaja, A.E., Unuabonah, E.I. & Oladoja, N.A. (2010). Competitive modeling for the biosorptive removal of copper and lead ions from aqueous solution by Mansonia wood sawdust. Bioresour. Technol. 101, 3844-3852. DOI: 10.1016/j. biortech.2009.10.064.[Crossref][WoS]
  • 4. SenthilKumar, P., Ramalingam, S., Sathyaselvabala, V., Kirupha, S.D. & Sivanesan, S. (2011). Removal of copper(II) ions from aqueous solution by adsorption using cashew nut shell. Desalination. 266, 63-71. DOI: 10.1016/j.desal.2010.08.003.[Crossref]
  • 5. Kumar, P.S., Ramalingam, S., Abhinaya, R.V., Kirupha, S.D., Murugesan, A. & Sivanesan, S. (2012). Adsorption of metal ions onto the chemically modified agricultural waste. CLEAN - Water, Air, Soil. 40 (2), 188-197. DOI: 10.1002/ clen.201100118.[Crossref]
  • 6. Kumar, P.S., Ramalingam, S., Sathyaselvabala, V., Kirupha, S.D., Murugesan, A. & Sivanesan, S. (2012). Removal of Cadmium(II) from aqueous solution by agricultural waste cashew nut shell. Korean J. Chem. Eng. 29 (6), 756-768. DOI: 10.1007/s11814-011-0259-2.[Crossref]
  • 7. Kumar, P.S., Gayathri, R., Senthamarai, C., Priyadharshini, M., Fernando, P.S.A., Srinath, R., & Kumar, V.V. (2012). Kinetics, mechanism, isotherm and thermodynamic analysis of adsorption of cadmium ions by surface-modified Strychnos potatorum seeds. Korean J. Chem. Eng. 29 (12), 1752-1760. DOI: 10.1007/s11814-012-0077-1.[Crossref]
  • 8. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum. J. Ame. Chem. Soc. 40, 1361-1403.[Crossref]
  • 9. Freundlich, H.M.F. (1906). Over the adsorption in solution. J. Phy. Chem. 57, 385-470.
  • 10. McKay, G., Otterburn, M.S. & Sweetney, A.G. (1981). The removal of colour from effluent using various adsorbents, III Silica rate process. Water Res. 14, 14-20. DOI: 10.1016/0043-1354(80)90037-8.[Crossref]
  • 11. Eagleton, K.R., Acrivers, L.C. & Vermenlem, T. (1966). Pore and solid diffusion kinetics in fixed adsorption constant pattern conditions. Ind. Eng. Chem. Res. 5, 212-223. DOI: 10.1021/i160018a011.[Crossref]
  • 12. Igwe, J.C. & Abia, A.A. (2007). Equilibrium sorption isotherm studies of Cd(II), Pb(II) and Zn(II) ions detoxification from waste water using unmodified and EDTA-modified maize husk. Electron. J. Biotechn. 10, 536-548. DOI: 10.2225/ vol10-issue4-fulltext-15.[Crossref]
  • 13. King, P., Anuradha, K., Lahari, S.B., Kumar, Y.P. & Prasad, V.S.R.K. (2008). Biosorption of Zinc From Aqueous Solution Using Azadirachta indica bark: Equilibrium and kinetic Studies. J. Hazard. Mater. 152, 324-329. DOI: 10.1016/j. jhazmat.2007.06.101.[Crossref]
  • 14. Mohan, D. & Singh, K.P. (2002). Single-and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse - an agricultural waste. Water Res. 36, 2304-2318. DOI: 10.1016/S0043-1354(01)00447-X.[Crossref]
  • 15. SenthilKumar, P., Ramalingam, S., Abhinaya, R.V., Kirupha, S.D., Vidhyadevi, T. & Sivanesan, S. (2012). Adsorption equilibrium, thermodynamics, kinetics, mechanism and process design of Zinc(II) ions onto cashew nut shell. Can. J. Chem. Eng. 90, 973-982. DOI: 10.1002/cjce.20588.[Crossref]
  • 16. Zhu, Y., Hu, J. & Wang, J. (2012). Competitive adsorption of Pb(II), Cu(II) and Zn(II) onto xanthate-modified magnetic chitosan. J. Hazard. Mater. 221-222, 155-161. DOI: 10.1016/j. jhazmat.2012.04.026.[Crossref][WoS]
  • 17. Dupont, L., Bounanda, J., Dumonceau, J. & Aplincourt, M. (2005). Biosorption of Cu(II) and Zn(II) onto a Lignocellulosic substrate extracted from wheat bran, Environ. Chem. Lett. 2, 165-168. DOI: 10.1007/s10311-004-0095-2.[Crossref]
  • 18. Wang, X., Qin, Y. & Li, Z. (2006). Biosorption of zinc from aqueous solutions by rice bran: Kinetics and equilibrium studies, Sep. Sci. Tech. 41, 741-756. DOI: 10.1080/01496390500527951.[Crossref]
  • 19. Mohammad, M., Maitra, S., Ahmad, N., Bustam, A., Sen, T.K. & Dutta, B.K. (2010). Metal ion removal from aqueous solution using physic seed hull. J. Hazard. Mater. 179, 363-372. DOI: 10.1016/j.jhazmat.2010.03.014.[Crossref]
  • 20. Guo, X.Y., Zhang, A.Z. & Shan, X.Q. (2008). Adsorption of metal ions on lignin. J. Hazard. Mater. 151, 134-142. DOI: 10.1016/j.jhazmat.2007.05.065.[Crossref]
  • 21. Conrad, K. & Hansen, H.C.B. (2007). Sorption of zinc and lead on coir. Bioresour. Technol. 98, 89-97. DOI: 10.1016/j. biortech.2005.11.018.[WoS][Crossref]
  • 22. Srivastava, V.C., Mall, I.D. & Mishra, I.M. Modelling individual and competitive adsorption onto cadmium (II) and zinc (II) metal ions from aqueous solution onto bagasse fly ash, Sep. Sci. Tech. 41(12), 2685-2710. DOI: 10.1080/01496390600725687.[Crossref]
  • 23. Chubar, N., Carvalho, J.M.R. & Correia, M.J.N. (2003). Cork biomass as biosorbent for Cu(II), Zn(II), Ni(II). ColloidsSurf. A Physicochem. Eng. Aspects. 230, 57-65. DOI: 10.1016/j. colsurfa.2003.09.014.[Crossref]
  • 24. Annadurai, G., Jung, R.S. & Lee, D.J. (2003). Adsorption of heavy metals from water using banana and orange peels, Water Sci. Tech. 47, 185-190.
  • 25. Lagergren, S. (1898). About the theory of so-called adsorption of soluble substances. Kungliga Svenska VetenskHandl. 24, 1-39.
  • 26. Ho, Y.S. & McKay, G. (1999). Pseudo-second order model for sorption processes. Proc. Biochem. 34, 451-465.[Crossref]
  • 27. Weber, W.J. & Morris, J.C. (1963). Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. Am. Soc. Civ. Eng. 89, 31-60.
  • 28. Boyd, G.E., Adamson, A.W. & Myers, L.S. (1947). The exchange adsorption of ions from aqueous solutions by organic zeolites. II. Kinetics. J. Ame. Chem. Soc. 69, 2836-2848.
  • 29. Levenspiel, O. (1999). Chemical reaction engineering, 3rd Edition, John Wiley & Sons.
  • 30. Lewandowski, Z. & Roe, F. (1994). Communication to the editor: diffusivity of Cu2+ in calcium alginate gel beads. Biotech. Bioeng. 43, 186-187.
  • 31. Veglio, F., Beolchini, F. & Gasbarro, A. (1997). Biosorption of toxic metals: an equilibrium study using free cells of Arthrobacter sp. Proc. Biochem. 32, 99-105. DOI: 10.1016/ S0032-9592(96)00047-7. [Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0041
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.