Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 25-34
Article title

Monitoring of organophosphorus pesticides and remediation technologies of the frequently detected compound (chlorpyrifos) in drinking water

Title variants
Languages of publication
Studies on the currently used organophosphorus insecticides with respect to their environmental levels and effective remediation technologies for their residues in water have been considered as a source of major concern. This study was carried out to monitor the presence of organophosphorus in drinking water plants (Kafr-El-Shiekh, Ebshan, Elhamoul, Mehalt Aboali, Fowa, Balteem and Metobess) in Kafr-El-Shiekh Governorate, Egypt. Furthermore, it was carried out to evaluate the efficiency of different remediation technologies (advanced oxidation processes and bioremediation) for removing chlorpyrifos in drinking water. The results showed the presence of several organophosphorus pesticides in water sampling sites. Chlorpyrifos was detected with high frequency relative to other compounds in drinking water. Nano photo-Fenton like reagent (Fe2O3(nano)/H2O2/UV) was the most effective treatment for chlorpyrifos removal in drinking water followed by ZnO(nano)/H2O2/UV, Fe3+/H2O2/UV and ZnO/H2O2/ UV, respectively. Bioremediation of chlorpyrifos by effective microorganisms (EMs) removed 100% of the chlorpyrifos initial concentration after 23 days of treatment. There is no remaining toxicity in chlorpyrifos contaminated-water after remediation on treated rats with respect to cholinesterase activity and histological changes in kidney and liver relative to control. Advanced oxidation processes especially with nanomaterials and bioremediation with effective microorganisms can be regarded as safe and effective remediation technologies for chlorpyrifos in drinking water.
Physical description
1 - 09 - 2013
20 - 09 - 2013
  • 1. Tankiewicz, M., Fenik, J. & Biziuk, M. (2010). Determination of organophosphorus and organonitrogen pesticides in water samples ends in. Anal. Chem. 29, 1050-1063. DOI: 10.1016/j.trac.2010.05.008.[Crossref]
  • 2. Sosnowska, K., Styszko-Grochowiak, K. & Gołas, J. (2009). Emerging contaminants in aquatic environment-sources, risk and analytical problems Anal. 4, 44-48.
  • 3. McKinlay, R., Plant, J.A., Bell, J.N.B. & Voulvoulis, N. (2008). Endocrine disrupting pesticides: Implications for risk assessment Environ. Inter., 34, 2, 168-183. DOI: 10.1016/j. envint.2007.07.013.[Crossref][WoS]
  • 4. Lasram, M.M., Annabi, A.B., El-Elj, N., Selmi, S., Kamoun, A., El-Fazaa, S. & Gharbi, N. (2009). Metabolic disorders of acute exposure to malathion in adult wistar rats. J. Hazard. Mat. 163, 1052-1055. DOI:10.1016/j.jhazmat.2008.07.059.[Crossref]
  • 5. Derbalah, A.S. (2009). Chemical remediation of carbofuran insecticide in aquatic system by advanced oxidation processes. J. Agric. Res. Kafr Elsheikh Univ. 35 (1), 308-327.
  • 6. Shawaqfeh, A.T. & Al Momani, F.A. (2010). Photocatalytic treatment of water soluble pesticide by advanced oxidation technologies using UV light and solar energy. Solar Energy, 84, 1157-1165.[WoS]
  • 7. Francisca, M.C., Vilar, V.J.P., Ferreira, Ana, F.C.C., Felipe, D.R.A. & Márcia, D., Sousa, M.A., Goncalves, C., Boaventura Rui, A.R. & Alpendurada, M.F. (2012). Treatment of a pesticide-containing wastewater using combined biological and solar-driven AOPs at pilot scale Chem. Eng. J. 209, 429-441. DOI: 0.1016/j.cej.2012.08.009.
  • 8. Derbalah, A.S., Nakatani, N. & Sakugawa, H. (2004). Photocatalytic removal of fenitrothion in pure and natural waters by photo-Fenton reaction. Chemosphere, 57, 635-644. DOI: 10.1016/j.[Crossref]
  • 9. Lines, M.G. (2008). Nanomaterials for practical functional uses. J. Alloys Compd, 449, 242-245. DOI: 10.1016/j.[Crossref]
  • 10. Mamalis, A.G. (2007). Recent advances in nanotechnology. J. Mat. Process. Technol. 181, 52-58.
  • 11. Miyazaki, K. & Islam, N. (2007). Nanotechnology systems of innovation - an analysis of industry and academia research activities. Technovation, 27, 661-675. DOI: 10.1016/j. technovation.2007.05.009.[Crossref][WoS]
  • 12. Cuenya, B.R. (2010). Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 518, 3127-3150. DOI: 10.1016/j.tsf.2010.01.018.[Crossref]
  • 13. Theng, B.K.G. & Yuan, G. (2008). Nanopaticles in the soil environment. Elements 4, 395-399.[WoS][Crossref]
  • 14. Feng, J., Hu, X. & Yue, P.L. (2004 a). Novel bentonite clay-based Fe-nanocomposite as a heterogeneous catalyst for photo-Fenton discoloration and mineralization of Orange II. Environ. Sci. Technol. 38, 269-275.[Crossref]
  • 15. Feng, J., Hu, X. & Yue, P.L. (2004 b). Discoloration and mineralization of Orange II using different heterogeneous catalysts containing Fe: a comparative study. Environ. Sci. Technol. 38, 5773-5778.[Crossref]
  • 16. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 a). Encapsulation of nanosized catalysts in the hollow core of a mesoporous carbon capsule. J. Catal. 251, 239-243. DOI: 10.1016/j.jcat.2007.07.006.[Crossref]
  • 17. Valdés-Solís, T.P., Valle-Vigón, P., Álvarez, S., Marbán, G. & Fuertes, A.B. (2007 b). Manganese ferrite nanoparticles synthesized through a nanocasting route as a highly active Fenton catalyst. Catal. Commun. 8, 2037-2042. DOI: 10.1016/j. catcom.2007.03.030.[Crossref][WoS]
  • 18. Zelmanov, G., Semiat, R. (2008). Iron(3) oxide-based nanoparticles as catalysts in advanced organic aqueous oxidation. Wat. Res. 42, 492-498. DOI: 10.1016/j.watres.2007.07.045.[Crossref]
  • 19. Nurmi, J., Tratnyek, P.G., Sarathy, V., Baer, D.R., Amonette, J.E., Pecher, K., Wang, C., Linehan, J.C., Matson, D.W., Penn, R.L. & Driessen, M.D. (2005). Characterization and properties of metallic iron nanoparticle: spectroscopy, electrochemistry, and kinetics. Environ. Sci. Technol. 39, 1221-1230. DOI: 10.1021/es049190u.[Crossref]
  • 20. Megharaj, M., , Ramakrishnan, B., Venkateswarlu, K., Sethunathan, N. & Naidu, R. (2011). Bioremediation approaches for organic pollutants: A critical perspectiveReview Environ. Inter. 37, 1362-1375.[WoS]
  • 21. Vidali, M. (2001). Bioremediation. An overview. PureAppl. Chem. 73 (7): 1163-1172 . DOI: 10.1351/pac200173071163.[Crossref]
  • 22. Kralj, M.B., Franko, M. & Trebse, P. (2007). Photodegradation of organophosphorus insecticides-Investigations of products and their toxicity using gas chromatography-mass spectrometry and AChE-thermal spectrometric bioassay. Chemosphere 67, 99-107. DOI: 10.1016/j.chemosphere.2006.09.039.[Crossref][WoS]
  • 23. Simonian, A.L., Efremenko, E.N. & Wild, J.R. (2001). Discriminative detection of neurotoxins in multi-component samples. Anal. Chim. Acta 444, 179-186.
  • 24. Abdel-Halim, K.Y., Salama, A.K., El-Khateeb, E.N. & Bakry, N.M. (2006). Organophosphorus pollutants (OPP) in aquatic environment at Damietta Governorate, Egypt: Implications for monitoring and biomarker responses. Chemosphere 63, 1491-1498. DOI: 10.1016/j.chemosphere.2005.09.019.[Crossref]
  • 25. Abdel-Megeed, A. (2004). Psychrophilic degradation oflong chain alkanes, Unpublished doctoral dissertation, Technical University Hamburg-Harburg, Germany. pp. 158.
  • 26. Derbalah, A.S., Massoud, A.H. & Belal, E.B. (2008). Biodegrability of famoxadone by various microbial isolates in aquatic system. Land Contamination & Reclama. 16 (1), 13-23. DOI: 10.2462/09670513.876.[Crossref]
  • 27. Ellman, G.L., Courtney, K.D., Andres, V. & Featherstone, R.M. (1961). A new and rapid calorimetric determination of acetyl cholinesterase activity. Biochem. Pharmacol. 7, 88-95.[Crossref]
  • 28. Bancroft, J.D. & Stevens, A. (1996). Theory and Practiceof Histological Techniques. (4th ed.). Churchill Livingstone. Edinburg, London, Melbourne and New York.
  • 29. Abd-Allah, S.W. & Hesham, M.G. (2003). Monitoring of pesticide residues in different sources of drinking water in some rural areas. Alex. J. Agric. Res. 48 (3), 187-199.
  • 30. Ashry, M.A., Bayoumi, O.C., El-Fakharany, I.I., Derbalah, A.S. & Ismail, A.A. (2006). Monitoring and removal of pesticides residues in drinking water collected from Kafr El-Sheikh governorate, Egypt. J. Agric. Res. Tanta Univ. 32 (3), 691-704.
  • 31.Aizawa, M.Y.T., Matumoto, N. & Ouna, F. (1994). Degradation of Pesticides by Chlorination During Water Purification. Groundwater Contamination, Environmental Restoration, and Diffuse Source Pollution. Water Sci. Tech. 30, 119-128.
  • 32. Aslan, S. (2005). Combined removal of pesticides and nitrates in drinking waters using biodenitrification and sand filter system Process. Biochem. 40, 417-424. DOI: 10.1016/j. procbio.2004.01.030.[Crossref]
  • 33. Ayranci, E. & Hoda, N. (2005). Adsorption kinetics and isotherms of pesticides onto activated carbon-cloth. Chemosphere. 60, 1600-1607. DOI: 10.1016/j.chemosphere.2005.02.040 .[Crossref]
  • 34. Matilainen, A., Vepsäläinen, M. & Sillanpää, M. (2010). Natural organic matter removal by coagulation during drinking water treatment. A Rev. Advances in Colloid and Interface Sci. 159,189-197. DOI: org/10.1016/j.cis.2010.06.007.
  • 35. Sarkar, B.N., Venkateswralu, R., Nageswara, B., Hattacharjeec, C. & Kalea, V. (2007). Treatment of pesticide contaminated surface water for production of potable water by a coagulation-adsorption-nanofiltration approach. Desalination 212, 129-140. DOI: 10.1016/j.desal.2006.09.021.[WoS][Crossref]
  • 36. He, F., Zhao, D., Liu, J. & Roberts, C.B. (2007). Stabilization of Fe-Pd nanoparticles with sodium carboxymethyl cellulose for enhanced transport and dechlorination of trichloroethylene in soil and groundwater. Indian Engineer. Chem. Res. 46, 29-34. DOI: 10.1021/ie0610896.[WoS][Crossref]
  • 37. He, F. & Zhao, D. (2005). Preparation and characterization of a new class of starch-stabilized bimetallic nanoparticles for degradation of chlorinated hydrocarbons in water. Environ. Sci. Technol. 39,3314-3320. DOI:10.1021/es048743y.[Crossref]
  • 38. Hayashi, H., Nakajima, Y. & Ohta, K. (2007). Novel degradation method of organic compounds in human surroundings using iron oxide. Rep. Technol. Res. Institute Osaka Pref. 21, 79-83. DOI: 10.1016/j.chemosphere.2010.11.052.[Crossref]
  • 39. Takuya, M., Tokumura, M., Sekine, M. & Kawase, Y. (2011). Hydroxyl radical concentration profile in photo-Fenton oxidation process: Generation and consumption of hydroxyl radicals during the discoloration of azo-dye Orange II. Chemosphere 82, 1422-1430. DOI: 10.1016/j.chemosphere.2010.11.052.[WoS][Crossref]
  • 40. Noorjahan, M., Kumari, V.D., Subrahmanyam, M. & Panda, L. (2005). Immobilized Fe(III)-HY: an efficient and stable photo-Fenton catalyst. Appl. Catal., B 57, 291-298.[Crossref]
  • 41. Pare, B.P., Singh, S. & Jonnalagadda, B. (2008). Visible light induced heterogeneous advanced oxidation process to degrade pararosanilin dye in aqueous suspension of ZnO. Indian J. Chem. 4, 830-835.
  • 42. Kwan, W.P. & Voelker, B.M. (2003). Rates of hydroxyl radical generation and organic compound oxidation in mineral- catalyzed Fenton-like systems. Environ. Sci. Technol. 37, 1150-1158. DOI: 10.1021/es020874g.[Crossref]
  • 43. Wang, H., Xie, C., Zhang, W., Cai, Z., Cai, S., Yang, Z. & Gui, Y. (2007). Comparison of dye degradation efficiency using ZnO powders with various size scales. J. Hazard. Mat. 141, 645-652.
  • 44. Garrido-Ramírez, E.G., Theng, B.K.G. & Mora M.L. (2010). Clays and oxide minerals as catalysts and nanocatalysts in Fenton-like reactions - A review Applied Clay Science 47, 182-192. DOI: 10.1016/j.clay.2009.11.044.[Crossref]
  • 45. Higa, T. (1995). What is EM Technology. College of Agriculture, University of Ryukyus, Okinawa, Japan.
  • 46. EM Technology. (1998). Effective Microorganisms for a Sustainable Agriculture and Environment. From Link
  • 47. EM Trading (2000). Effective Microorganisms (EM) from Sustainable Community Development. From EM Technology Product Link
  • 48. Diver, S. (2001). Nature Farming and Effective Microorganisms’, Rhizosphere II: Publications. from Steve Diver Link
  • 49. Mulbry, W. & Karns, J. (1989). Purification and characterization of three parathion hydrolases from gram-negative bacterial strains. Appl. Environ. Microbiol. 55, 289-293.
  • 50. Borm, P.J., David Robbins, D., Haubold, S., Kuhlbusch, T., Fissan, H., Donaldson, K., Schins, R., Stone, V., Kreyling, W., Lademann, J., Krutmann, J., Warheit, D. & Oberdorster, E. (2006). The potential risks of nanomaterials: a review carried out for ECETOC. Particle & Fibre Toxicol. 3, 1-35. DOI: 0.1186/1743-8977-3-11.
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.