Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 20-24
Article title

The effect of surface functional groups of nanosilica on the properties of polyamide 6/SiO2 nanocomposite

Title variants
Languages of publication
The present study investigated the effect of the surface functional groups of nanosilica on the interfacial, crystallization, and thermal stability of polyamide 6/SiO2 (PA6/SiO2) nanocomposite, in which nanosilica was modified in situ with both 3-triethoxysilylpropylamine and 3-methacryloxypropyltrimethoxy silane¬ (KH-550 and KH-570). The FTIR analysis results showed the chemical bonding action between the reacting amino groups of nanosilica and end carboxyl groups of polyamide 6 enhanced with increasing the ratio of KH-550 and KH-570. The XRD spectrum indicated that the crystal structure of PA6/SiO2 nanocomposites tended to form α crystal type that was beneficial to an improvement of mechanical properties, and which was in agreement with the results of mechanical strength measurements. It was also found that crystallization temperature and crystallization rate of PA6/SiO2 nanocomposites were lower than that of neat polyamide 6.

Physical description
1 - 09 - 2013
20 - 09 - 2013
  • Henan University, Key Lab for Special Functional Materials, Ministry of Education, Kaifeng 475000 Henan China
  • Huanghuai University, The Department of Chemistry & Chemical Engineering, Zhumadian 463000, Henan China
  • Henan University, Key Lab for Special Functional Materials, Ministry of Education, Kaifeng 475000 Henan China
  • Henan University, Key Lab for Special Functional Materials, Ministry of Education, Kaifeng 475000 Henan China,
  • Henan University, Key Lab for Special Functional Materials, Ministry of Education, Kaifeng 475000 Henan China,
  • 1. Hasan, M.M., Zhou, Y.X. & Mahfuz, H., et al (2006). Effect of SiO2 nanoparticle on thermal and tensile behavior of nylon 6. Mater. Sci Eng. A., 429 (1-2): 181-188. DOI: 10.1016/j.msea.2006.05.124.[Crossref]
  • 2. Mahfuz, H., Hasan, M. & Dhanak, V., et al. (2008). Reinforcement of nylon 6 with functionalized silica nanoparticles for enhanced tensile strength and modulus. Nanotechnology, 19: 1-7. DOI: 10.1088/0957-4484/19/44/445702.[Crossref]
  • 3. Tung, J., Gupta, R. K. & Simon, G.P., et al. (2005). Rheological and mechanical comparative study of in situ polymerized and melt-blended nylon 6 nanocomposites, Polymer, 46 (23): 10405-10418. DOI: 10.1016/j.polymer.2005.08.043.[Crossref]
  • 4. Li, Y., Yu, J. & Guo, Z. X. (2002). The influence of silane treatment on nylon 6/nano-SiO2 in situ polymerization, J. Appl. Polym. Sci., 84: 827-834. DOI: 10.1002/app.10349.[Crossref]
  • 5. Zhao, C.X., Zhang, P. & Lu, R., et al. (2007). Preparation of PA6/SiO2 nanocomposite by in situ polymerization, Polym. Mater. Sci. & Eng., 23 (1): 218-221. DOI: 10.3969/j.issn.1000-7555(2007)01-0218-04.[Crossref]
  • 6. Fang, X.W., Wang, B.R. & Chen, F.F., et al. (2010). Different surface-modified nano-SiO2/MC nylon 6 composites. Journal of Henan University (Natural Science), 40 (1): 13-17. DOI: 10.3969/j.issn.1003-4978.2010.01.004.[Crossref]
  • 7. Tang, S.C., Fan, X.Y . & Shao, J.M., et al. (2008). The preparation of nano-SiO2/nylon 6 composites. China patent No. 200710173056.7.
  • 8. Tian L.W., Tang, S.C. & Shao, J.M., et al. (2008). In-situ preparation of PA6/SiO2 masterbatch and its composites. China Plastics. 22 (9): 34-37. DOI: 10.3969/j.issn.1001-9278(2008)09-0034-04.[Crossref]
  • 9. Naveau E., Dominkovics, Z. & Detrembleur, C. (2011). Effect of clay modification on the structure and mechanical properties of polyamide-6 nanocomposites. Eur. Polym. J., 47 (1): 5-15. DOI: 10.1016/j.eurpolymj.2010.10.031.[Crossref]
  • 10. Ho, J.Ch. & Wei, K.H. (2000). Induced γ→α Crystal Transformation in Blends of Polyamide 6 and Liquid Crystalline Copolyester. Macromolecules, 33 (14): 5181-5186. DOI: 10.1021/ma991702f.[Crossref]
  • 11. Fornes, T.D. & Paul, D.R. (2003). Crystallization behavior of nylon 6 nanocomposites. Polymer, 44 (14): 3945-3961. DOI: 10.1016/S0032-3861(03)00344-6.[Crossref]
  • 12. Murthy, N.S., Wang, Z.G. & Akkapeddi, M.K., et al. (2002). Isothermal crystallization kinetics of nylon 6, blends and copolymers using simultaneous small and wide-angle X- -ray measurements. Polymer, 43 (18): 4905-4913. DOI: 10.1016/ S0032 3861(02)00307-5.[Crossref]
  • 13. Xu, X.M., Li, B.J. & Lu, H.M., et al. (2008). The effect of the interface structure of different surface-modified nano-SiO2 on the mechanical properties of nylon 66 composites. J. Appl. Polym. Sci., 107: 2007-2014. DOI: 10.1002/app.27325.[Crossref]
  • 14. Siddharth, D., Willis, B.H. & Wkkuan, A.G. (1996). Crystal structures and properties of nylon polymers from theory. J. Am. Chem. Soc., 118, 12291-12301. DOI: 10.1021/ja944125d.[Crossref]
  • 15. Lon, J.M., Rick, D.D. & William, L.J. (1999). Observation of α and γ crystal forms and amorphous regions of nylon 6 -clay nanocomposites using solid-state 15N nuclear magnetic resonance[J]. Macromolecules, 32 (23): 7958-7960. DOI: 10.1021/ma991307p. [Crossref]
Document Type
Publication order reference
YADDA identifier
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.