Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 3 | 1-6

Article title

Deposition of a polymeric porous superhydrophobic thin layer on the surface of poly(vinylidenefluoride) hollow fiber membrane


Title variants

Languages of publication



Porous superhydrophobic layer of low-density polyethylene (LDPE) was created by a simple approach on the Poly(vinylidenefluoride) (PVDF) hollow fiber membranes. Acetone and ethanol mixtures with different volume ratios were used as the non-solvent on the coating surface. A 5:1 (v/v) acetone/ethanol ratio provided a porous surface with a 152° ± 3.2 water contact angle. The high contact angle could reduce membrane wettability for better carbon dioxide capture when the membrane was used as gas-liquid contactor in absorption processes. To assess the effect of the created superhydrophobic layer, the pristine and modified membranes were tested in a CO2 absorption system for ten days. The results revealed that the absorption flux in the modified membrane was higher than that of pristine membrane.









Physical description


1 - 09 - 2013
20 - 09 - 2013


  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • Tikrit University, Chemical Engineering Department, Saladdin, Iraq
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia
  • University Sains Malaysia, School of Chemical Engineering, Engineering Campus, 14300 Nibong Tebal, Pulau Pinang, Malaysia


  • 1. Desideri, U. & Paolucci, A. (1999). Performance modeling of a carbon dioxide removal system for power plants. EnergyConvers. Manage. 40 (18), 1899-1915. DOI: 10.1016/S0196-8904(99)00074-6.[Crossref]
  • 2. Qi, Z. & Cussler, E.L. (1985). Microporous hollow fibers for gas absorption. Part 1: mass transfer in the liquid. J. Membr. Sci. 23 (3), 321-332. DOI: 10.1016/S0376-7388(00)83149-X.[Crossref]
  • 3. Qi, Z. & Cussler, E.L. (1985). Microporous hollow fibers for gas absorption. II. Mass transfer across the membrane J. Membr. Sci. 23 (3), 333-345. DOI: 10.1016/S0376-7388(00)83150-6.[Crossref]
  • 4. Wang, R., Zhang, H.Y., Feron, P.H.M. & Liang, D.T. (2005). Influence of membrane wetting on CO2 capture in microporous hollow fiber membrane contactors. Sep. Purif. Technol. 46 (1-2), 33-40. DOI: 10.1016/j.seppur.2005.04.007.[Crossref]
  • 5. Ahmad, A.L., Sunarti, A.R., Teongl, L.K. & Fernando, W.J.N. (2009). Development of thin film composite for CO2 separation in membrane gas absorption application. Asia-Pac. J. Chem. Eng. 4 (5), 787-792. DIO: DOI: 10.1002/apj.339.[Crossref]
  • 6. Rajabzadeh, S., Yoshimoto, S., Teramoto, M., Al-Marzouqi M. & Matsuyama, H. (2009). CO2 absorption by using PVDF hollow fiber membrane contactors with various membrane structures. Sep. Purif. Technol. 69 (2), 210-220. DOI: 10.1016/j. seppur.2009.07.021.[WoS][Crossref]
  • 7. Mansourizadeh, A., Ismail, A.F. & Matsuura T. (2010). Effect of operating conditions on the physical and chemical CO2 absorption through the PVDF hollow fiber membrane contactor. J. Membr. Sci. 353 (1-2), 192-200. DOI: 10.1016/j. memsci.2010.02.054.[Crossref][WoS]
  • 8. Ahmad, A.L., Sunarti, A.R., Lee, K.T. & Fernando, W.J.N. (2010). CO2 removal using membrane gas absorption. Int. J. Greenh. Gas Control. 4 (3), 495-498. DOI: 10.1016/j. ijggc.2009.12.003.[WoS][Crossref]
  • 9. Mansourizadeh, A. & Ismail, A.F. (2011). Preparation and characterization of porous PVDF hollow fiber membranes for CO2 absorption: Effect of different non-solvent additives in the polymer dope. Int. J. Greenh. Gas Control. 5 (4), 640-648. DOI: 10.1016/j.ijggc.2011.03.009.[WoS][Crossref]
  • 10. Atchariyawut, S., Jiraratananon, R. & Wang, R. (2007). Separation of CO2 from CH4 by using gas-liquid membrane contacting process. J. Membr. Sci. 304 (1-2), 163-172. DOI: 10.1016/j.memsci.2007.07.030.
  • 11. Nishikawa, N., Ishibashi, M., Ohta, H., Akutsu, N. & Matsumoto, H. (1995). CO2 removal by hollow fiber gas-liquid contactors. Energy Convers Manage. 36 (6-9), 415-418. DOI: 10.1016/0196-8904(95)00033-A.[Crossref]
  • 12. Mansourizadeh, A., Ismail, A.F., Abdullah, M.S. & Ng, B.C. (2010). Preparation of polyvinylidene fluoride hollow fiber membranes for CO2 absorption using phase-inversion promoter additives. J. Membr. Sci. 355 (1-2), 200-207. DOI: 10.1016/j.memsci.2010.03.031.[Crossref]
  • 13. Mansourizadeh, A. & Ismail, A.F. (2010). Effect of LiCl concentration in the polymer dope on the structure and performance of hydrophobic PVDF hollow fiber membranes for CO2 absorption. Che. Eng. J. 165 (3), 980-988. DOI: 10.1016/j. cej.2010.10.034.[Crossref]
  • 14. Su-Hsia, L., Kuo-Lun, T., Wei-Jie, C. & Hao-Wei, C. (2009). Absorption of carbon dioxide by mixed piperazine- alkanolamine absorbent in a plasma-modified polypropylene hollow fiber contactor. J. Membr. Sci. 333(1-2), 30-37. DOI: 10.1016/j.memsci.2009.01.039.[Crossref][WoS]
  • 15. Su-Hsia, L., Kuo-Lun, T., Hao-Wei, C. & Kueir-Rarn, L. (2009). Influence of fluorocarbon flat-membrane hydrophobicity on carbon dioxide recovery. Chemosphere, 75 (10), 1410-1416. DOI: 10.1016/j.chemosphere.2009.02.027.[Crossref][WoS]
  • 16. Julianna, F.A., Sandra, E.K., Jilska, P.M. & Geoff, S.W. (2008). Fabrication of a superhydrophobic polypropylene membrane by deposition of a porous crystalline polypropylene coating, J. Membr. Sci. 318 (1-2), 107-113. DOI: 10.1016/j. memsci.2008.02.032.[Crossref]
  • 17. Lv, Y., Xinhai Y., Jingjing, J., Shan-Tung, T., Jinyue, Y. & Erik, D. (2012). Fabrication and characterization of superhydrophobic polypropylene hollow fiber membranes for carbon dioxide absorption. App. Energy, 90 (1), 167-174. DOI: 10.1016/j.apenergy.2010.12.038.[Crossref][WoS]
  • 18. Dimitris, S.F., Cristina, D.R. & de Pinho, N.M. (1999). Atomic force microscopy of dense and asymmetric cellulosebased membranes. J. Membr. Sci. 160 (2), 235-242. DOI: 10.1016/S0376-7388(99)00089-7.[Crossref]
  • 19. Tai-Shung, C., Jian-Jun, Q., Alfred, H. & Kee-Chua, T. (2002). Visualization of the effect of die shear rate on the outer surface morphology of ultrafiltration membranes by AFM. J. Membr. Sci. 196 (2), 251-266. DOI: 10.1016/S0376-7388(01)00609-3.[Crossref]
  • 20. Supakorn, A., Chunsheng, F., Rong, W., Ratana, J. & Liang, D.T. (2006). Effect of membrane structure on masstransfer in the membrane gas-liquid contacting process using microporous PVDF hollow fibers. J. Membr. Sci. 285 (1-2), 272-281. DOI: 10.1016/j.memsci.2006.08.029.[Crossref]
  • 21. Shui-ping, Y., Meng-Xiang, F., Wei-Feng, Z., Shu-Yuan, W., Zhi-Kang, X., Zhong-Yang, L. & Ke-Fa, C. (2007). Experimental study on the separation of CO2 from fuel gas using hollow fiber membrane contactors without wetting. Fuel Proce. Technol. 88 (5), 501-511. DOI: 10.1016/j.fuproc.2006.12.007.[Crossref]
  • 22. Xinhong, L., Guangming, C., Yongmei, M., Lin, F., Hongzhi, Z., Lei, J. & Fosong, W. (2006). Preparation of a super-hydrophobic poly(vinyl chloride) surface via solvent-non solvent coating. Polymer. 47 (2), 506-509. DOI: 10.1016/j. polymer.2005.08.097. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.