PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 112-115
Article title

The use of microorganisms in increasing the protein yield of cassava (Manihot esculenta Crantz) peel wastes

Content
Title variants
Languages of publication
EN
Abstracts
EN
Growth and microbial protein production on hydrolyzed cassava peel waste by Trichoderma viride and Lactobacillus delbrueckii NRRL B-763 were investigated. Trichoderma viride was selected based on its high cellulase activity on filter paper (2.91 mg glucose/mL), cotton wool (3.08 mg glucose/mL) and carboxymethylcellulose (3.46 mg glucose/ mL) while Lactobacillus delbrueckii NRRL B-763 produced 5.84 mg protein/g in cassava peel after 72 h. Samples of cassava peel were hydrolyzed with the solutions of HCl, H2SO4 and NaOH at 0.5% concentration. The hydrolysate was neutralized to pH 6.5 and supplemented with KH2PO4 (5% w/v), urea (2.7% w/v) and (NH4)2SO4 (9% w/v). The hydrolysates produced by the solutions of HCl contained higher reducing sugar and soluble sugar content than H2SO4 and NaOH hydrolysates. The culture of Trichoderma viride was used in single culture fermentation of hydrolyzed cassava peels or in mixed culture fermentation with Lactobacillus delbrueckii NRRL B-763. Protein yield produced in 0.5% HCl hydrolysates was significantly (p ≤ 0.01) higher than that in H2SO4. The unhydrolyzed control samples produced the lowest protein. This study demonstrated the potential of cassava peel waste as a substrate for a recycling process and by- product recovery.
Publisher
Year
Volume
15
Issue
2
Pages
112-115
Physical description
Dates
published
1 - 07 - 2013
online
10 - 07 - 2013
References
  • 1. Tor- Agbidye, J., Palmer, V.S., Lasarev, M.R., Craig, M.A., Blythe, L.L. & Sabri, M.I. (1999). Bioactivation of cyanide to cyanate in sulfur amino-acid deficiency: relevance to neurological disease in humans subsisting on cassava. ToxicologicalScs. 50, 228-235. DOI: 10. 1093/toxsci/50.2.228.[Crossref]
  • 2. Oyewole, O.B. & Odunfa, S.A. (1990). Characterization and distribution of lactic acid bacteria in cassava fermentation during fufu preparation. J. Appl. Microbiol. 68, 145-152. DOI: 10. 1111/j.1365-2672.1990.tb02559.x[Crossref]
  • 3. Ubalua, A.O. (2007). Cassava wastes: treatment options and value addition alternatives. Afr J. Biotech.6 (18), 2065-2073.
  • 4. Ekundayo, J.A. (1980). In: J.E. Smith, D.R. Berry, and B. Kristiasen (Eds.). Fungal Biotechnology (pp. 244-270). London: Academic Press.
  • 5. Aro, S.O. (2008). Imoprovement in the nutritive quality of cassava and its by-products through microbial fermentation. African J. Biotech. 7 (25), 4789-4797. DOI: 10.5897/AJB08.1005.[Crossref]
  • 6. Aiello, C., Ferrer, A. & Bedesma, A. (1996). Effect of alkaline pretreatment at various temperatures on cellulase and biomass production with Trichoderma reesei QM - 9414. Biores. Technol. 57, 13-16. DOI: 10. 1016/0960-8524(96)00012-0.[Crossref]
  • 7. Zhang, X.Y., Xu, C.Y. & Wang, X.H.J. (2007). Pretreatment of bamboo residues with Coriolus versicolor for enzymatic hydrolysis. J. Biosci. Bioeng. 104, 149-151, PMID17884661.
  • 8. Fan, L.T., Lee, Y. & Gharpuray, M.M. (1982). The nature of lignocellulosics and their pretreatments for enzymatic hydrolysis. Adv. Biochem. Eng. 23: 157-187. DOI: 10. 1007/3540116982_4.[Crossref]
  • 9. Rodriguez-Vazguez, R. & Diazcervantes, D. (1994). Effect of chemical solutions sprayed on sugar cane bagasse pith to produce single cell protein - physical and chemical analysis of pith. Biores. Tech. 47: 159-164. DOI: 10. 1016/0960-8524(94)90115-5.[Crossref]
  • 10. Garcia, M. (1999). Cassava root meal for poultry. J. Appl. Poultry Res. 8,132-137.
  • 11. Omole, T.A. & Sonaiya, E.B. (1981). The effect of protein source and methionine supplementation of cassava peel meal utilization by growing rabbits. Nutr. Rep. International 23 (4), 729-737.
  • 12. Okafor, N. & Ejiofor, A.N. (1985). The linamarase of Leuconostoc mesenteroides: production, isolation and some properties. J. Sci. Food Agric. 36, 669-678. DOI: 10. 1002/ jsfa.2740360807.[Crossref]
  • 13. Miller, G.L. (1959). Use of dinitrosalicic acid reagent for determination of reducing sugar. Anal. Chem. 31, 426-428. DOI: 10. 1021/ac60147a030.[Crossref]
  • 14. Pitt, J. & Hocking, A.D. (1997). Fungi and food spoilage. London: Blackie Academic and Professional.
  • 15. Onions, A.H.S., Allsopp. D. & Eggins, H.O.W. (1981). Smith’s Introduction to Industrial Mycology (7th ed.) London: Edward Arnold.
  • 16. Lowry, O.H., Rosebrough, N.J., Farr, A.L. & Randall, R.J. (1951). Protein measurement with folin- phenol reagent. J. Biochem. 193: 265-275.
  • 17. Plummer, D.T. (1978). An Introduction to practical biochemistry (2nd ed.). London: McGraw- Hill Book Company.
  • 18. Peitersen, N. (1975). Production of cellulases and protein from barley straw by Trichoderma viride. Biotechnol. Bioeng. 17, 361-374. DOI: 10. 1002/bit.260170306[Crossref]
  • 19. Okafor, N. Umeh, C. & Ibenegbu, C. (1998). Amelioration of garri, a cassava-based fermented food by the inoculation of microorganisms secreting amylase, lysine and linamarase into cassava mash. World J. Microb. Biobech. 14, 835-838. DOI: 10. 1023/A: 1008897711947.[Crossref]
  • 20. Shen, X. & Xia, L. (2006). Lactic acid Production from cellulosic waste by immobilized cells of Lactobacillus delbrueckii. World J. Microb. Biotech. 22: 1109-1114. DOI: 10. 1007/ s11274-006-9150-4.[Crossref]
  • 21. John, R.P. Nampoothiri K.M. & Pandey, A. (2007). Production of L (+) lactic acid from cassava starch hydrolysate by immobilized Lactobacillus delbrueckii. J. Basic Microbiol. 47, 25-30. DOI: 10.1002/jobm.200610208.[Crossref]
  • 22. Mandels, M. & Weber, J. (1969). The production of cellulases. Adv. Chem. 95, 391-414. DOI: 10.1021/ba-1969-0095.ch023.[Crossref]
  • 23. Soccol., C.R, Marin, B., Raimbault, M. & Lebeault, J. M. (1994). Breeding and growth of Rhizopus in raw cassava by solid state fermentation. J. Appl. Microbiol. Biotechnol. 41, 330-336. DOI: 10.1007/BF00221228.[Crossref]
  • 24. Rogers, D.J., Coleman, E. Spino, D.F. & Purcell, T.C. (1972). Production of fungal protein from cellulose and waste cellulosics. Environ. Sci. Terhnol. 6: 715-719. DOI: 10. 1021/ es60067a008.[Crossref]
  • 25. Romanelli, R.A., Honston, C.W. & Barnett, S.M. (1975). Studies on thermophilic cellulolytic fungi. Applied Microbiology 30 (2): 276-281. PMCID: PMC187167.[PubMed]
  • 26. Erickson, K.E. & Larson, K. (1975). Fermentation of waste mechanical figres from a news print mill by the rot fungus Sporotrichum pulverulentum. Biotech. Bioeng.17, 327-348. DOI: 10.1002/bit.260170304.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0032
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.