Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 107-111

Article title

Kinetics and mechanism of meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate


Title variants

Languages of publication



Developing catalyst is very significant for biologically important reactions which yield products, used as drugs. Mechanistic study on meso-tetraphenylporphyriniron(III) chloride (TPP) catalysed oxidation of indole by sodium perborate in aqueous acetic acid medium have been carried out. The reaction follows a fractional order with respect to substrate and catalyst. The order with respect to oxidant was found to be one. Increase in the percentage of acetic acid and increase in the concentration of [H+] decreased the rate. The reaction fails to initiate polymerization, and a radical mechanism is ruled out. Activation and thermodynamic parameters have been computed. A suitable kinetic scheme based on these observations has been proposed. Significant catalytic activity is observed for the reaction system in the presence of TPP.









Physical description


1 - 07 - 2013
10 - 07 - 2013


  • Department of Chemistry, Sona College of Technology, Salem-636 005, India
  • Department of Chemistry, Sona College of Technology, Salem-636 005, India


  • 1. Sundberg, R.J. & Kirk-Othmer. (1995). Indole. Encyclopediaof Chemical Technology, Wiley, NewYork.
  • 2. Goyal, R.N. & Sangal, A. (2005). Oxidation chemistry of indole-2-carboxylic acid mechanism and products formed in neutral aqueous solution. Electrochim Acta, 50, 2135. DOI: doi.org/10.1016/j.electacta.2004.09.021.[Crossref]
  • 3. Al-Kazwini, A.T., O’Neill, P., Adams, G.E., Cundall, R.B., Lang, G. & Junino, A. (1991). Reactions of indolic radicals produced upon one-electron oxidation of 5,6-dihydroxyindole and its N(1)-methylated analogue. J. Chem. Soc., Perkin Trans. 2, 1941-1945. DOI: 10.1039/P29910001941.[Crossref]
  • 4. Al-Kazwini, A.T., O’Neill, P., Adams, G.E., Cundall, R. B., Junino, A. & Maignan, J. (1992). Characterisation of the intermediates produced upon one-electron oxidation of 4-, 5-, 6- and 7-hydroxyindoles by the azide radical. J. Chem. Soc.,Perkin Trans. 2, 657-661. DOI: 10.1039/P29920000657.[Crossref]
  • 5. Krylov, S.N. & Dunford, H.B. (1996). Detailed model of the peroxidase-catalyzed oxidation of indole-3-acetic acid at neutral pH. J. Phys. Chem. 100, 913-920. DOI: 10.1021/ jp9522270.[Crossref]
  • 6. Lawson, W.B. & Witkop, B. (1961). A simple method for the preparation of oxindoleacetic and Propionic acids from the parent indoles. J. Org. Chem. 26, 263. DOI: 10.1021/jo01060a618.[Crossref]
  • 7. Finch, N. & Taylor, W.E. (1962). Oxidative transformations of indole alkaloids. I. The preparation of oxindoles from Yohimbine; The structures and partial syntheses of Mitraphylline, Rhyncophylline and Corynoxeine. J. Am. Chem Soc. 84, 3871-3877. DOI: 10.1021/ja00879a016.[Crossref]
  • 8. Rangappa, K.S., Esterline, D.T., Mythily, C.K., Mahadevappa, D.S. & Ambedkar, S.Y. (1993). Oxidation of indoles by n-chloro-n-sodio-p-toluenesulphonamide in alkaline medium catalysed by osmium(VIII): A kinetic study. Polyhedron. 12, 1719-1724. DOI: doi.org/10.1016/S0277-5387 (00)84603-3.[Crossref]
  • 9. Meenakshisundaram, S.P. & Sarathi, N. (2007). Kinetics and mechanism of oxidation of indole by HSO5 -. Int. J. Chem. Kinet. 39, 46-51. DOI: 10.1002/kin.20215.[WoS][Crossref]
  • 10. Karunakaran, C., Ramachandran, V. & Palanisamy, P.N. (1999). Linear free energy relationship in complex reaction: Tungsten (VI) catalyzed perborate oxidation of S-Phenylmercaptoacetic acids. Int. J. Chem. Kinet., 31, 675-681. DOI: 10.1002/ (SICI)1097-4601(1999)31:9<675::AID-KIN8>3.0.CO; 2-H.[Crossref]
  • 11. Karunakaran, C. & Palanisamy, P.N. (1998). Kinetic evidence for (N, N-dimethylaniline)-oxodiperoxomolybdenum(VI) or tungsten(VI) as oxidizing species in molybdenum(VI) or tungsten(VI) catalyzed hydrogen peroxide (perborate) oxidation of N, N-dimethylaniline. synth. React. Inorg. Met. Org. Chem., 28, 1115-1125. DOI: 10.1080/00945719809349393.[Crossref]
  • 12. Karunakaran, C. & Muthukumaran, B. (1997). Zirconium (IV) catalysis in perborate oxidation of iodide. React. Kinet. Catal. Lett., 60, 387-394. DOI: 10.1007/BF02475703.[Crossref]
  • 13. Karunakaran, C. & Muthukumaran, B. (1995). Molybdenum(VI) catalysis of perborate or hydrogen peroxide oxidation of iodide ion. Transition Met. Chem. (London), Vol. 20 (5), 460-462. DOI: 10.1007/BF00141517.[Crossref]
  • 14. Meunier, B. (1992). Metalloporphyrins as versatile catalysts for oxidation reactions and oxidative DNA cleavage. Chem. Rev. 92 (6), 1411-1456. DOI: 10.1021/cr00014a008.[Crossref]
  • 15. Larsen, J. & Jorgensen, K.A. (1992). A facile oxidation of secondary amines to imines by iodosobenzene or by a terminal oxidant and manganese or iron porphyrins and manganese salen as the catalysts. J. Chem. Soc. Perkin Trans. 2, 1213-1217. DOI: 10.1039/P29920001213.[Crossref]
  • 16. Groves, J.T., Nemo, T.E. & Myers, R.S. (1979). Hydroxylation and epoxidation catalyzed by iron-porphine complexes. Oxygen transfer from iodosylbenzene. J. Am. Chem. Soc. 101, 1032-1033. DOI: 10.1021/ja00498a040.[Crossref]
  • 17. Bhuvaneshwari, D.S. & Elango, K.P. (2009). Solvent hydrogen bonding and structural influences on the Cr (VI) oxidation of anilines in aqueous acetic acid medium. J. Indian. Chem. Soc. 86, 242-249.
  • 18. Laidler, K. (1965). Chem. Kinet, Tata-Mcgraw Hill, New Delhi.
  • 19. Ruff, F. & Kucsman, A. (1985). Mechanism of the oxidation of sulphides with sodium periodate J. Chem. Soc. PerkinTrans. 2, 683-687. DOI: 10.1039/P29850000683[Crossref]
  • 20. Meenakshisundaram, S.P. & Sokalingam, R.M. (2001). Nonlinear Hammett Relationships in the Reaction of Peroxomonosulfate Anion (HOOSO3 -) with meta- and para-Substituted Anilines in Alkaline Medium. Collect. Czech. Chem. Commun. 66, 897-911. DOI: 10.1135 /cccc2001089.[Crossref]
  • 21. Meenakshisundaram, S.P., Selvaraju, M., Made Gowda, N.M. & Rangappa, K.S. (2005). Effect of substituents on the rate of oxidation of anilines with peroxomonosulfate monoanion (HOOSO−3) in aqueous acetonitrile: A mechanistic study. Int. J. Chem. Kinet. 37, 649-657. DOI: 10.1002/kin.20119.[Crossref]
  • 22. Zhou, X.T., Ji, H.B. & Yuan, Q.L. (2008). Baeyer-Villiger oxidation of ketones catalyzed by iron(III) meso- tetraphenylporphyrin chloride in the presence of molecular oxygen. J. Porphyr. Phthalocya, 12, 94-100. DOI: 10.1142/S1088424608000121.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.