PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 99-106
Article title

Bio-methanization of organic fraction from municipal solid waste: temperature effects

Content
Title variants
Languages of publication
EN
Abstracts
EN
The main objective of this study was to analyse the development of dry anaerobic digestion process of OFMSW in batch reactors under two temperature ranges, thermophilic (55°C) and mesophilic (35°C). The experimental results lead to the conclusion that the thermophilic range has a greater rate of hydrolysis and is therefore more effective to degrade wastes, shortening the overall operating time. For example, the hydrolytic step in the thermophilic (T) process lasted an average of 8 days versus 14 days in the mesophilic (M) range. The methanogenic phase lasted for 18 and 29 days in the T and M processes, respectively. The mesophilic range showed higher removal of the organic effluent but with greater uptime requirements. Moreover, the thermophilic range showed greater productivities than the mesophilic range, and the productivities were approximately doubled in terms of the produced biogas from a given amount of consumed organic matter.
Publisher
Year
Volume
15
Issue
2
Pages
99-106
Physical description
Dates
published
1 - 07 - 2013
online
10 - 07 - 2013
References
  • 1. National Institute of Statistics. (2002). Survey collection and treatment of urban waste 2002. Library of INE-Central Services Madrid.
  • 2. Ategrus. (2007). Julian Jaureguízar Uriarte. Biological Treatments in Spain 2007: results of ATEGRUS Observatory on aerobic and anaerobic biological treatment 2006-2007. Bilbao. Spain.
  • 3. PNIR 2008-2015. (2009). National Integrated Waste Plan: 2008-2015, approved by the Governing Council on December 26, 2008. Official Publish on February 26.
  • 4. Tchobanoglous, G. (1998). Integrated solid waste management, Ed: McGraw-Hill, DL Madrid.
  • 5. Angenent, L.T., Sung, S., Raskin, L. (2002). Methanogenic population dynamics during start-up of a full-scale anaerobic sequencing batch reactor treating swine waste. Water Research. 36, p. 4648-4654. DOI: http://dx.doi.org/10.1016/S0043-1354(02)00199-9.[Crossref]
  • 6. Fannin, K.F. & Biljetina, R. (1987). Reactor designs: anaerobic digestion of biomass. Elsevier applied Science, pp. 141-169. New York ISBN: 1-85166-069-0.
  • 7. Angelidaki, I., Ahring, B.K. (1994). Thermophilic anaerobic digestion of livestock waste: effect of ammonia. Applied Microbiology and Biotechnology, 38, p. 560-564. DOI: 10.1007/ BF00242955.[Crossref]
  • 8. Hansen, K.H., Angelidaki, I. & Ahring, B.K. (1998). Anaerobic digestion of swine manure: inhibition by ammonia. Water Research 321, p. 5-12. DOI: 10.1016/S0043-1354(97)00201-7.[Crossref]
  • 9. Campos, E. (2001). Optimisation of anaerobic digestion of pig slurry with organic waste using co-digestion of the food industry, Doctoral Dissertation, Department of Environment and Soil Science, Environmental Engineering Laboratory, University of Lleida, Lleida. Spain.
  • 10. Romero García, L.I., Sales, D. & Martinez de la Ossa, E. (1990). Comparison of three practical processes for purifying wine distillery wastewaters. Process Biochemistry International. 93-96.
  • 11. Fdez-Rguez, J., Perez, M. & Romero, L.I. (2008). Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste OFMSW. Bioresource Technology, p. 6075-6080. ISSN: 0960-8524., 9914. Doi: 10.1016/j.biortech.2007.12.048.[Crossref][WoS]
  • 12. Fdez-Rguez, J., Perez, M. & Romero, L.I. (2010). Kinetics of mesophilic anaerobic digestion of the organic fraction of municipal solid waste: Influence of initial total solid concentration. ISSN: 0960-8524. DOI: 10.1016/j.biortech.2010.03.046.[Crossref]
  • 13. Ronan Le Hyaric, Hassen Benbelkacem, Julien Bollon, Rémy Bayard, Renaud Escudié, Pierre Buffière. (2011). Influence of moisture content on the specific methanogenic activity of dry mesophilic municipal solid waste digestate. Journal of Chemical Technology and Biotechnology. Volume 87, Issue 7, p. 1032-1035. DOI: 10.1002/jctb.2722.[Crossref][WoS]
  • 14. APHA AWWA WPCF. (1992). Standard methods for the examination of water and wastewater, 18th ed. American Public Health Association, American Water Works Association and Water Pollution Control Federation, Washington, DC, USA.
  • 15. WO/2006/111598, PCT/ES2006/000196. (2008). Patent. System for the simultaneous implementation of biodegradability tests. Álvarez Gallego, C.J., Pérez García, M., Sales Márquez, D. Fernández Güelfo, L.A., Forster Carneiro, T., Romero García, L.I..
  • 16. Cun-Fang, Liu, Xing-Zhong, Yuan, Guang-Ming, Zeng, Wen-Wei, Li & Jing, Li. (2008). Prediction of methane yield at optimum pH for anaerobic digestion of organic fraction of municipal solid waste. Bioresource Technology, 994: p. 882-888. DOI: 10.1016/j.biortech.2007.01.013.[Crossref]
  • 17. Hegde, G. & Pullammanappallil, P. (2007). Comparison of thermophilic and mesophilic one-stage, batch, high-solids anaerobic digestion. Environmental Technology, 284, p. 361-369. DOI: 10.1080/09593332808618797.[WoS][Crossref]
  • 18. Liu, D.W., Zeng, R.J. & Angelidaki, I. (2008). Enrichment and adaptation of extreme- thermophilic 70. degree.C hydrogen producing bacteria to organic household solid waste by repeated batch cultivation. International Journal of Hydrogen Energy, 3322, 6492-6497. ISSN: 0360-3199. DOI: 10.1016/j. ijhydene.2008.08.014.[Crossref][WoS]
  • 19. Chanakya H.N., Sharma Isha & Ramachandra, T.V. (2009). Micro-scale anaerobic digestion of point source components of organic fraction of municipal solid waste. Waste management New York, N.Y., 294, p. 1306-12. DOI: 10.1016/j. wasman.2008.09.014.[Crossref]
  • 20. Mino, T., San Pedro, D. & Matsuo, T. (2000). Estimation of the rate of the slowly biodegradable COD hydrolysis under anaerobic, anoxic and aerobic conditions by experiments using starch as model substrate. Water Science and Technology, 312, p. 95-103. DOI: 10.1016/0273-1223(95)00183-N.[Crossref]
  • 21. De la Rubia Romero, M.A. (2003). Puesta en marcha y optimización de la degradación anaerobia termofílica de lodos de EDAR. Tesis doctoral, Universidad de Cádiz.
  • 22. Lu, Jingquan, Gavala, Hariklia, Skiadas & Ioannis. (2008). Improving anaerobic sewage sludge digestion by implementation of a hyper-thermophilic prehydrolysis step; En: Journal of Environmental Management, Vol. 88, p. 881-889. DOI: 10.1016/j.jenvman.2007.04.020.[WoS][Crossref]
  • 23. Satoto, E., Nayono, Claudia Gallert & Josef Winter. (2009). Foodwaste as a co-substrate in a fed-batch anaerobic biowaste digester for constant biogas supply. Water Science & Technology. Vol. 59 No 6 p. 1169-1178. DOI: 10.2166/ wst.2009.102.[Crossref]
  • 24. Kim, M., Ahn, Y.H. & Speece, R.E. (2002). Comparative process stability and efficiency of anaerobic digestion; mesophilic vs. thermophilic. Water Res. Oct; 36 (17): 4369-85. DOI: 144.206.159.178.[Crossref]
  • 25. Surroop, D. & Mohee, R. (2011). Comparative assessment of anaerobic digestion of municipal solid waste at mesophilic and thermophilic temperatures. International Journal of Environmental Technology and Management. Vol. 14, Issue 1-4: 238-251. DOI: 10.1504/IJETM.2011.039272.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0030
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.