PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 73-80
Article title

Study of the anatase to rutile transformation kinetics of the modified TiO2

Content
Title variants
Languages of publication
EN
Abstracts
EN
TiO2 attracts much interest because of its many potential applications. The use of titanium dioxide strongly depends on its polymorphic form: brookite, anatase, or rutile. Only rutile and anatase play an important role in industry. Anatase as a metastable form undergoes a non-reversible transformation into rutile. Understanding the kinetics of phase transformation and the processes of crystal growth of a material is essential for controlling its structure and, thus, its specific properties. The main purpose of this paper is to explain the anatase to rutile recrystallization kinetics in the modified TiO2 calcined from industrial hydrated titanium dioxide. The apparent activation energy of anatase to rutile transformation and the average size of titanium dioxide crystallites were determined for the unmodified TiO2 and TiO2 modified with P, K, Al, B, Zn, Zr, Ce, Sn, or Sb introduced in the amount of 0.5 mol% and 1.0 mol% when recalculated for their oxides. The growth of TiO2 crystallites during calcination was strongly inhibited by P, Ce and Zr, and inhibited to a lesser degree by Al, Sn and Sb. B and Zn did not affect the investigated process and K accelerated crystallites growth. The values of apparent activation energy depending on a modifier formed a relationship: Al<Sb<Sn<P<B<Ce<0=Zn=K<Zr. The observed dependencies can be explained by reactions occurring between the modifiers and titanium dioxide.
Publisher
Year
Volume
15
Issue
2
Pages
73-80
Physical description
Dates
published
1 - 07 - 2013
online
10 - 07 - 2013
References
  • 1. Karvinen, S. (2003). The effects of trace elements on the crystal properties of TiO2. Solid State Sci. 5 (5), 811-819. DOI: 10.1016/S1293-2558(03)00082-7.[Crossref]
  • 2. Fu, L.J., Liu, H., Zhang, H.P., Li, C., Zhang, T., Wu, Y. P., Holze, R. & Wu H.Q. (2006). Synthesis and electrochemical performance of novel core/shell structured nanocomposites. Electrochem. Commun. 8 (1), 1-4. DOI: 10.1016/j. elecom.2005.10.006.[Crossref]
  • 3. Tayade, R.J., Suriola, P.K., Kulkarni, R.G. & Jasra, R.V. (2007). Photocatalytic degradation of dyes and organic contaminants in water using nanocrystalline anatase and rutile TiO2. Sci. Technol. Adv. Mater. 8 (2007), 455-462. DOI: 10.1016/j. stam.2007.05.006.[Crossref][WoS]
  • 4. Isley, S.L. & Penn, R.L. (2008). Titanium dioxide nanoparticles: Effect of sol−gel pH on phase composition, particle size, and particle growth mechanism. J. Phys. Chem. C. 112 (12), 4469-4474. DOI: 10.1021/jp710844d.[Crossref]
  • 5. Mehranpour, H., Askari, M., Ghamsari, M.S. & Farzalibeik, H. (2010). Study on the phase transformation kinetics of sol-gel drived TiO2 nanoparticles. J. Nanomater. 2010, ID 626978. DOI: 10.1155/2010/626978.[Crossref][WoS]
  • 6. Rao, C.N.R. & Rao, K.J. (1978). Phase transitions in solids. New York, USA: McGraw-Hill.
  • 7. Chvoj, Z., Sestal, J. & Triska, A. (1991). Kinetic phasepiagrams: Nonequilibrium phase transitions (Studies in modernthermodynamics). Amsterdam, Netherlands: Elsevier Science Ltd.
  • 8. Gennari, F.C. & Pasquevich, D.M. (1998). Kinetics of the anatase-rutile transformation in TiO2 in the presence of Fe2O3. J. Mater. Sci. 33 (6), 1571-1578.[Crossref]
  • 9. Hu, Y., Tsai, H.-L. & Huang, C.L. (2003). Phase transformation of precipitated TiO2 nanoparticles. Mater. Sci. Eng. A. 344 (2003), 209-214. DOI: 10.1016/S0921-5093(02)00408-2.[Crossref]
  • 10. Diebold, U. (2003). The surface science of titanium dioxide. Surf. Sci. Rep. 48 (5-8), 53-229. DOI: 10.1016/S0167-5729(02)00100-0.[Crossref]
  • 11. Ullman’s Encyclopedia of Industrial Chemistry. (2002). Weinheim, Germany: Wiley-VCH. DOI: 10.1002/14356007.[Crossref]
  • 12. Gouma, P.I. & Mills, M.J. (2001). Anatase-to rutile transformation in titania powders. J. Am. Ceram. Soc. 84 (3), 619-622. DOI: 10.1111/j.1151-2916.2001.tb00709.x.[Crossref]
  • 13. Li, J.G. & Ishigaki, T. (2004). Brookite - rutile phase transformation of TiO2 studied with monodispersed particles. ActaMater. 52 (17), 5143-5150. DOI: 10.1016/j.actamat.2004.07.020.[Crossref]
  • 14. Grzmil, B., Kic, B. & Rabe, M. (2004). Inhibition of the anatase-rutile phase transformation with addition of K2O, P2O5, and Li2O. Chem. Pap. 58 (6), 410-414.
  • 15. Hsiang, H.-I & Lin, S.-C. (2008). Effects of aging on nanocrystalline anatase-to-rutile phase transformation kinetics. Ceram. Int. 34(2008), 557-561. DOI: 10.1016/j.ceramint. 2006.12.004.[WoS][Crossref]
  • 16. Hsiang, H.I & Lin, S.C. (2006). Effects of aging on the kinetics of nanocrystalline anatase crystallite growth. Mater. Chem. Phys. 95 (2006), 275-279. DOI: 10.1016/j.matchemphys. 2005.06.019.[Crossref]
  • 17. Czanderna, A.W., Rao, C.N.R. & Honig, J.M. (1958). The anatase-rutile transition. Part 1. - Kinetics of the transformation of pure anatase. Trans. Faraday Soc. 54, 1069-1073. DOI: 10.1039/TF9585401069.[Crossref]
  • 18. MacKenzie, K.J.D. (1975). The calcination of titania. Trans. J. Brit. Ceram. Soc. 74 (1975), 77-84.
  • 19. Banfield, J.F., Bischoff, B. & Anderson, M. (1993). TiO2 accessory minerals: coarsening, and transformation kinetics in pure and doped synthetic nanocrystalline materials. Chem. Geol. 110 (1-3), 211-231. DOI: 10.1016/0009-2541(93)90255-H.[Crossref]
  • 20. Kumar, K.N.P., Keizer, K. & Burggraaf, A.J. (1993). Textural evolution and phase transformation in titania membranes: Part 1. - Unsupported membranes. J. Mater. Chem. 3 (11), 1141-1149. DOI: 10.1039/JM9930301141.[Crossref]
  • 21. Zhang, H. & Banfield, J.F. (1999). New kinetic model for the nanocrystalline anatase-to-rutile transformation revealing rate dependence on number of particles. Am. Mineral. 84, 528-535.
  • 22. Zhang, H. & Banfield, J.F. (2000). Phase transformation of nanocrystal line anatase-to-rutile via combined interface and surface nucleation. J. Mater. Res. 15(2), 437-448. DOI: 10.1557/JMR.2000.0067.[Crossref]
  • 23. Perego, C., Revel, R., Durupthy, O., Cassaignon, S. & Jolivet, J.P. (2010). Thermal stability of TiO2-anatase: Impact of nanoparticles morphology on kinetic phase transformation. Solid State Sci. 12 (6), 989-995. DOI: 10.1016/j.solidstatesciences. 2009.07.021.[Crossref]
  • 24. Weinberg, M.C. (1992). Transformation kinetics of particles with surface and bulk nucleation. J. Non-Cryst. Solids. 142 (1992), 126-132. DOI: 10.1016/S0022-3093(05)80015-8.[Crossref]
  • 25. Weinberg, M.C., Birnie, D.P. & Shneidman, V.A. (1997). Crystallization kinetics and the JMAK equation. J. Non-Cryst. Solids. 219 (1997), 89-99. DOI: 10.1016/S0022-3093(97)00261-5.[Crossref]
  • 26. Rangarajan, B., Shrout, T. & Langan M. (2009). Crystallization kinetics and dielectric properties of fresnoite BaO - TiO2 - SiO2 glass - ceramics. J. Am. Ceram. Soc., 92 (11), 2642-2647. DOI: 10.1111/j.1551-2916.2009.03255.x.[Crossref]
  • 27. Gleń, M. & Grzmil, B. (2012). Photostability and optical properties of modified titanium dioxide. Pure Appl. Chem. 84 (12), 2531-2547. DOI: 10.1351/PAC-CON-12-01-09.[Crossref][WoS]
  • 28. Ratajska, H. (1992). The effect of certain promoters on TiO2 crystal structure transformation, J. Thermal. Anal., 38 (1992), 2109-2114. DOI: 10.1007/BF01979623.[Crossref]
  • 29. Grzmil, B., Gleń, M., Kic, B. & Lubkowski, K. (2011). Preparation and characterization of single-modified TiO2 for pigmentary applications. Ind. Eng. Chem. Res. 50(11), 6535-6542. DOI: 10.1021/ie1016078.[Crossref][WoS]
  • 30. Gleń, M., Grzmil, B., Sreńscek-Nazzal, J. & Kic, B. (2011). Effect of CeO2 and Sb2O3 on the phase transformation and optical properties of photostable titanium dioxide. Chem. Pap. 65 (2), 203-212. DOI: 10.2478/s11696-010-0103-x.[WoS][Crossref]
  • 31. Hirano, M. & Kono, T. (2011). Synthesis of rutile-type TiO2-SnO2 solid solution nanoparticles by “forced co-hydrolysis” under hydrothermal conditions. IOP Conf. Series: Mater. Sci. Eng. 18 (2011) 062015. DOI: 10.1088/1757-899X/18/6/062015.[Crossref]
  • 32. Nolan, N.T., Seery, M.K. & Pillai, S.C. (2011). Crystallization and phase-transition characteristics of sol−gel-synthesized zinc titanates. Chem. Mater. 23 (6), 1496-1504. DOI: 10.1021/ cm1031688.[WoS][Crossref]
  • 33. Gesenhues, U. (1997). Doping of TiO2 pigments by Al3+. Solid State Ionics. 101-103, 1171-1180. DOI: 10.1016/ S0167-2738(97)00443-8.[Crossref]
  • 34. Gesenhues, U. (2001). Calcination of metatitanic acid to titanium dioxide white pigments. Chem. Eng. Technol. 24 (7), 685-694. DOI: 10.1002/1521-4125(200107)24:7.[Crossref]
  • 35. Reidy, D.J., Holmes, J.D. & Morris, M.A. (2006). The critical size mechanism for the anatase to rutile transformation in TiO2 and doped-TiO2. J. Eur. Ceram. Soc. 26 (9), 1527-1534. DOI: 10.1016/j.jeurceramsoc.2005.03.246.[Crossref]
  • 36. Dias, A.G., Skakle, J.M.S., Gibson, I.R., Lopes, M.A. & Santos, J.D. (2005). In situ thermal and structural characterization of bioactive calcium phosphate glass ceramics containing TiO2 and MgO oxides: High temperature - XRD studies. J. Non-Cryst. Solids. 351 (10-11), 810-817. DOI: 10.1016/j. jnoncrysol.2005.01.060.[Crossref]
  • 37. Bei, Z., Ren, D., Cui, X., Shen, J., Yang, X. & Zhang, Z. (2004). Photoelectrochemical properties and crystalline structure change of Sb-doped TiO2 thin films prepared by the sol-gel method. J. Mater. Res. 19 (11), 3189-3195. DOI: 10.1557/JMR.2004.0412.[Crossref]
  • 38. Criado, J., Real, C. (1983). Mechanism of the inhibiting effect of phosphate on the anatase-rutile transformation inducted by thermal and mechanical treatment of TiO2. J. Chem. Soc.,Faraday Trans., 1 (79), 2765-2771. DOI: 10.1039/F19837902765.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0026
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.