PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 40-47
Article title

Equilibrium and kinetic studies of Cr (VI) removal from synthetic wastewater by Acroptilon repense flower powder

Content
Title variants
Languages of publication
EN
Abstracts
EN
In this study the removal of Cr (VI) from synthetic wastewater was investigated using Acroptilon repens (Russian Knapweed) flower powder under various conditions (pH, contact time and initial concentration of Cr). The capacity of chromium adsorption at equilibrium conditions by this biosorbent was increased by adsorbate concentration. The results also showed that the removal efficiency of Cr (VI) was increased by increasing the contact time. By increasing the initial concentration of Cr (VI) solution, chromium removal was reduced. The suitability of adsorbents and their constants was tested or evaluated with the Langmuir, Freundlich and Temkin isotherms models. The results indicated that the Freundlich and Langmuir models (R2 > 0.99) gave a better concordance to the adsorption data in comparison with the Temkin equation (R2 = 0.97). The adsorption of Cr (VI) followed the pseudo-second-order kinetics (R2 = 0.991). The study showed that Acroptilon repens flower powder can be used as an effective lignocellulosic biomaterial and biosorbent for the removal of Cr (VI) from wastewater.
Publisher
Year
Volume
15
Issue
2
Pages
40-47
Physical description
Dates
published
1 - 07 - 2013
online
10 - 07 - 2013
References
  • 1. Mor, S., Ravindra, K. & Bishnoi, N. (2007). Adsorption of chromium from aqueous solution by activated alumina and activated charcoal, Bioresour Technol. 98, 954-957. DOI: 10.1016/j. biortech.2006.03.018.[Crossref]
  • 2. Muthukumaran, K. & Beulah, S. (2011). Removal of Chromium (VI) from wastewater using chemically activated Syzygium jambolanum nut carbon by batch studies, ProcediaEnviron Sci. 4, 266-280. DOI:10.1016/j.proenv.2011.03.032.[Crossref]
  • 3. Demirbas, E., Kobya, M., Senturk, E. & Ozkan, T. (2004). Adsorption kinetics for the removal of chromium (VI) from aqueous solutions on the activated carbons prepared from agricultural wastes, Water S.A. 30, 533-540.
  • 4. Mahvi, A.H., Naghipour, D., Vaezi, F. & Nazmara, S. (2005). Tea waste as an adsorbent for heavy metal removal from industrial wastewaters, Am. J. Appl. Sci. 2, 372-375. DOI: 10.3844/ ajassp.2005.372.375[Crossref]
  • 5. Neagu, V. & Mikhalovsky, S. (2010). Removal of hexavalent chromium by new quaternized crosslinked poly (4-vinylpyridines), J. Hazard Mater. 183, 533-540.[WoS]
  • 6. Cieslak-Golonka, M. (1996). Toxic and mutagenic effects of chromium (VI). A. Review. Polyhedron, 15, 3667-3689. DOI: 10.1016/0277-5387(96)00141-6.[Crossref]
  • 7. Seyf-Laye, M., Sika, A., Liu, F. & Chen, H. (2010). Optimization of key parameters for chromium (VI) removal from aqueous solutions using activated charcoal, J. Soil Sci. EnvironManage. 1, 55-62.
  • 8. Miretzky, P. & Cirelli, A.F. (2010). Cr (VI) and Cr (III) removal from aqueous solution by and modified lignocellulosic materials, J. Hazard Mater. 180, 1-19.
  • 9. Yan, G. & Viraraghavan, T. (2001). Heavy metal removal in a biosorption column by immobilized M. rouxii biomass, Bioresour Technol. 78, 243-249. DOI: http://dx.doi.org/10.1016/S0960-8524(01)00020-7.[Crossref]
  • 10. Hafeza, A.I., Manhay, M.S. & Khedr, M.A. (2002). RO membrane removal ofunreacted chromium from spent tanning effluent a pilot-scale stud. Desalination, 144, 237-242.
  • 11. Zhang, H., Tang, Y., Cai, D., Liu, X., Wang, X., Huang, Q. & Yu, Z. (2010). Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies, J. Hazard Mater, 181, 801-808. doi:10.1016/j.jhazmat.2010.05. 084.[Crossref][WoS]
  • 12. Wu, Y., Zhang, S., Guo, X. & Huang, H. (2008). Adsorption of chromium (III) on lignin, Bioresour Technol. 99, 7709-7715.[Crossref][WoS]
  • 13. Albadarin, A.B., Al-Muhtaseb, A.H., Al-Laqtah, N.A., Walker, G.M., Allen, S.J. & Ahmad, M.N.M. (2011). Biosorption of toxic chromium from aqueous phase by lignin: Mechanism, effect of other metals ions and salts, Chem. Eng. J. 169:20-30. DOI: 10.1016/j.cej. 2011.02.044.[Crossref]
  • 14. Dakiky, M., Khamis, M., Manassra, A. & Mer’eb, M. (2002). Selective adsorption of chromium (VI) in industrial wastewater using low-cost abundantly available adsorbents, Adv. Environ. Res. 6, 533-540. DOI: http://dx.doi.org/10.1016/S1093-0191(01)00079-X.[Crossref]
  • 15. Melo, J.S. & D’souza, S.F. (2004). Removal of chromium by mucilaginous seeds of Ocimum Basilicu, Bioresour Technol. 92 (2) 151-155.[Crossref]
  • 16. Tareen, R.B., Bibi, T., Khan, M., Ahmad, M. & Zafar, M. (2010). Indigenous knowledge of folk medicine by the women of Kalat and Khuzdar regions of Balochistan, Pakistan, Pakistan J. Botany. 42, 1465-1485.
  • 17. Ghahremen A. (1995).Flora of Iran .Research Institute of Forest and Rangelends and Tehran University press: Tehran. 3: 606-607. [Persian].
  • 18. Mozaffarian, V.A. (1996). Dictionary of Iranian plant Names. Farhange Moaser, 740.
  • 19. Norouziarasi, H., Yavari, I., Chalabian, F., Kiarostami, V., Ghaffarzadeh, F. & Nasirian, A. (2006). Chemical constituents and antimicrobial activities of the essential oil of Acroptilon repens (L.) DC, Flavour and Fragr. J. 21, 247-249. DOI: 10.1002/ffj.1568.[Crossref]
  • 20. Shamsa, F., Monsef, H., Ghamooshi, R. & Verdian-Rizi, M. (2008). Spectrophotometric determination of total alkaloids in some Iranian medicinal plants, Thai J. Pharm. Sci. 32, 17-20.
  • 21. Khan, M.A., Ahmad, M., Zafar, M., Sultana, S., Marwat, S.K., Shaheen, S., Leghari, M.K., Jan, G., Ahmad, F. & Nazir, A. (2011). Medico-botanical and chemical standardization of pharmaceutically important plant of Tricholepis chaetolepis (Boiss) Rech, J. Med. Plant Res. 5(8) 1471-1477.
  • 22. ASTM. (2007). Test Method for Particle Size Distribution of Granular Activated Carbon. Book of Standards.26th ed. Washington D.C. ASS, 15.01, 396-405.
  • 23. AWWA, APHA. (2005). Standard Methods for the Examination of Water and Wastewater. Washington DC, USA, 3, 67-3, 68.
  • 24. Rosales, E., Pazos, M., Sanromán, M. & Tavares, T. (2011). Application of zeolite Arthrobacter viscosus system for the removal of heavy metal and dye: Chromium and Azure B. Desalination. 284, 150-156. doi: 10.1016/j.desal.2011.08.049.[WoS][Crossref]
  • 25. Crini, G. (2005). Recent developments in polysaccharide- based materials used as adsorbents in wastewater treatment, Prog. Polym. Sci. 30, 38-70. DOI: 10.1016/j.progpolymsci. 2004.11.002.[Crossref]
  • 26. Wahab, M.A., Jellali, S., Jedidi, N. (2010). Ammonium biosorption onto sawdust: FTIR analysis, kinetics and adsorption isotherms modeling, Bioresour Technol. 101, 5070-5075. DOI: 10.1016/j.biortech.2010.01.121.[Crossref][WoS]
  • 27. Lie, Y., Zhengfang, Y., ZhongYou, W. & JinRen, N. (2008). Characteristics of Pb2+ biosorption with aerobic granular biomass. Chinese Sci. Bull, 53 (6): 948-953.[WoS]
  • 28. Gupta, V.K., Rastogi, A. & Nayak, A. (2010). Adsorption studies on the removal of hexavalent chromium from aqueous solution using a low cost fertilizer industry waste material, J. Colloid Interface Sci. 342, 135-141. DOI: 10.1016/j. jcis.2009.09.065.[Crossref][WoS]
  • 29. Altun, T. & Pehlivan, E. (2012). Removal of Cr (VI) from aqueous solutions by modified walnut shells, Food Chem. 132, 693-700. DOI: 10.1016/j.foodchem.2011.10.099.[Crossref][WoS]
  • 30. Owlad, M., Aroua, M.K. & Wan Daud, W.M.A. (2010). Hexavalent chromium adsorption on impregnated palm shell activated carbon with polyethyleneimine, Bioresour Technol. 101, 5098-5103.[WoS]
  • 31. Foo, K. & Hameed, B. (2010). Insights into the modeling of adsorption isotherm systems, Chem. Eng. J. 156, 2-10.
  • 32. Zhang, H., Tang, Y., Cai, D., Liu, X., Wang, X., Huang, Q. & Yu, Z. (2010). Hexavalent chromium removal from aqueous solution by algal bloom residue derived activated carbon: Equilibrium and kinetic studies, J. Hazard Mater. 181, 801-808.[WoS]
  • 33. Zubair, A., Bhatti, H.N., Hanif, M.A. & Shafqat, F. (2008). Kinetic and equilibrium modeling for Cr (III) and Cr (VI) removal from aqueous solutions by Citrus reticulata waste biomass, Water Air Soil Pollut. 191, 305-318.
  • 34. Anandkumar, J. & Mandal, B. (2011). Adsorption of chromium (VI) and Rhodamine B by surface modified tannery waste: Kinetic, mechanistic and thermodynamic studies, J. Hazard Mater. 186, 1088-1096.[WoS]
  • 35. Cimino, G., Passerini, A. & Toscano, G. (2000). Removal of toxic cations and Cr (VI) from aqueous solution by hazelnut shell, Water Res. 34, 2955-2962. DOI: 10.1016/S0043-1354(00) 00048-8.[Crossref]
  • 36. Ahmad, R. (2005). Sawdust: cost effective scavenger for the removal of chromium (III) ions from aqueous solutions, Water Air Soil Pollute. 163, 169-183. DOI: http://dx.doi.org/10.1007/s11270-005-0217-x.[Crossref]
  • 37. Elangovan, R., Philip, L. & Chandraraj, K. (2008). Biosorption of chromium species by aquatic weeds: Kinetics and mechanism studies, J. Hazard Mater. 152, 100-112.[WoS]
  • 38. Thamilarasu, P., Kumar, G.Vijaya, Tamilarasan, R., Sivakumar, V. & Karunakaran, K. (2011). Kinetic, Equilibrium and Thermodynamic studies on the removal of Cr (VI) by activated carbon prepared from Cajanus Cajan(L) Milsp seed shell, Pol. J. Chem. Tech. 13, 1-7. DOI: 10.2478/v100 26-011-0041-6.[Crossref]
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0022
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.