Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 7-9

Article title

Optimal conditions for the biological removal of arsenic by a novel halophilic archaea in different conditions and its process optimization


Title variants

Languages of publication



Recently, concerns about arsenic have been increased due to its high acute toxicity to human and serious environmental problems. In this study, the ability of Halorcula sp. IRU1, a novel halophilic archaea isolated from Urmia lake, Iran for arsenic bioaccumulation was investigated and optimized by Taguchi experimental design. The optimum conditions for high arsenic bioaccumulation by Haloarcula sp. IRU1 could be achieved in the presence temperature 40oC, pH 8 and NaAsO2 at 90 mg/L. Under optimum conditions, the microorganism was able to perform their desired function with a 60.89 percent removal of arsenic. In conclusion, Haloarcula sp. IRU1 is resistant to arsenic and removes it in different conditions.









Physical description


1 - 07 - 2013
10 - 07 - 2013


  • Razi University, Department of Biology, Faculty of Science, Kermanshah, Iran
  • University of Qom, Department of Civil Engineering, Qom, Iran
  • Razi University, Department of Biology, Faculty of Science, Kermanshah, Iran
  • Shahid Sadoughi University of Medical Sciences-Yazd, Department of Biochemistry, Faculty of Medicine, Iran
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Paramedicine, Ilam, Iran
  • Ilam University of Medical Sciences, Department of Clinical Biochemistry, School of Medicine, Ilam, Iran


  • 1. Nordstrom, D.K. (2002). Worldwide occurrences of arsenic in ground water. Science 296: 2143-2145. DOI: 10.1126/ science.1072375.[Crossref]
  • 2. Wang, S. & Mulligan, C.N. (2006). Occurrence of arsenic contamination in Canada: sources, behavior and distribution. Science of the Total Environment 366: 701-721. http://dx.doi.org/10.1016/j.scitotenv.2005.09.005.[Crossref]
  • 3. Wang, S. & Zhao, X. (2009). On the potential of biological treatment for arsenic contaminated soils and groundwater. Journal of Environmental Management 90: 2367-2376. http://dx.doi.org/10.1016/j.jenvman.2009.02.001.[WoS][Crossref]
  • 4. Welch, A.H., Oremland, R.S., Davis, J.A. & Watkins, S.A. (2006). Arsenic in ground water: a review of current knowledge and relation to the CALFED solution area with recommendations for needed research. San Francisco Estuary and Watershed Science 4: 1-32. http://escholarship.org/uc/item/8342704q.
  • 5. Shakya, S., Pradhan, B., Smith, L., Shrestha, J. & Tuladhar, S. (2011). Isolation and characterization of aerobic culturable arsenic-resistant bacteria from surfacewater and groundwater of Rautahat District, Nepal. Journal of Environmental Management 95: 250-255. http://dx.doi.org/10.1016/j.jenvman.2011.08.001.[Crossref][WoS]
  • 7. Dopp, E., Hartmann, L.M., Florea, A.M., von Recklinghausen, U., Pieper, R., Shokouhi, B., Rettenmeier, A.W., Hirner, A.V. & Obe, G. (2004). Uptake of inorganic and organic derivatives of arsenic associated with induced cytotoxic and genotoxic effects in Chinese hamster ovary (CHO) cells. Toxicology and Applied Pharmacology 201: 156-165. DOI:10.1016/j.taap.2004.05.017.[Crossref]
  • 8. Schroeder, H.A. & Balassa, J.J. (1966). Abnormal Trace Elements in Man: Arsenic. Journal of Chronic Diseases 19: 85-106.
  • 9. Smith, A.H., Lingas, E.O. & Rahman, M. (2000). Contamination of Drinking Water by Arsenic in Bangladesh: A Public Health Emergency. Bulletin of the World Health Organization 78: 1093-1103.
  • 10. Duker, A.A., Carranza, E.J.M. & Hale, M. (2005). Arsenic Geochemistry and Health. Environment International 31: 631-641. http://dx.doi.org/10.1016/j.envint.2004.10.020.[Crossref]
  • 11. Zouboulis, A.I. & Katsoyiannis, I.A. (2005). Recent Advances in the Bioremediation of ArsenicContaminated Groundwaters. Environment International 31: 213-219. http://dx.doi.org/10.1016/j.envint.2004.09.018.[Crossref]
  • 12. Kadirvelu, K., Thamaraiselvi, K. & Namasivayam, C. (2001). Adsorption of nickel(II) from aqueous solution onto activated carbon prepared from coirpith. Separation and Purification Technology 24: 477-505. DOI: 10.1016/S1383-5866(01)00149-6.[Crossref]
  • 13. Kadirvelu, K., Senthilkumar, P., Thamaraiselvi, K. & Subburam, V. (2002). Activated carbon prepared from biomass as adsorbent: elimination of Ni(II) from aqueous solution. Bioresource Technology 81: 87-90. http://dx.doi.org/10.1016/S0960-8524(01)00093-1.[Crossref]
  • 14. Congeevaram, S., Dhanarani, S., Park, J., Dexilin, M. & Thamaraiselvi, K. (2007). Biosorption of chromium and nickel by heavy metal resistant fungal and bacterial isolates. Journal of Hazardous Materials 146: 270-277. http://dx.doi.org/10.1016/j.jhazmat.2006.12.017.[WoS][Crossref]
  • 15. Clausen, C.A. (2000). Isolating metal-tolerant bacteria capable of removing copper, chromium, and arsenic from treated wood. Waste Management & Research 18: 264-268.
  • 16. Srinath, T., Verma, T., Ramteke, P.W. & Garg, S.K. (2002). Chromium(VI) biosorption and bioaccumulation by chromate resistant bacteria. Chemosphere 48: 427-435. http://dx.doi.org/10.1016/S0045-6535(02)00089-9.[Crossref]
  • 17. Takeuchi, M., Kawahata, H., Gupta, L.P., Kita, N., Morishita, Y., Ono, Y. & Komai, T. (2007). Arsenic resistance and removal by marine and non-marine bacteria. Journal of Biotechnology 127: 434-442. http://dx.doi.org/10.1016/j.jbiotec.2006.07.018.[WoS][Crossref]
  • 18. Srivastava, P.K., Vaish, A., Dwivedi, S., Chakrabarty, D., Singh, N. & Tripathi, R.D. (2011). Biological removal of arsenic pollution by soil fungi. Science of the Total Environment 409: 2430-2442. http://dx.doi.org/10.1016/j.scitotenv.2011.03.002.[Crossref][WoS]
  • 19. Aleboyeh, A., Daneshvar, N. & Kasiri, M.B. (2008). Optimization of C.I. Acid Red 14 azo dye removal by electrocoagulation batch process with response surface methodology. Chemical Engineering and Processing 47: 827-832. DOI: 10.1016/j.cep.2007.01.033.[Crossref]
  • 20. Santos, S.C. & Boaventura, R.A. (2008). Adsorption modelling of textile dyes by sepiolite. Applied Clay Science 42: 137-145. http://dx.doi.org/10.1016/j.clay.2008.01.002.[Crossref][WoS]
  • 21. Lizama, K., Fletcher, A.T.D. & Sun, G. (2011). Removal processes for arsenic in constructed wetlands. Chemosphere 84: 1032-1043. doi:10.1016/j.chemosphere.2011.04.022.[WoS][Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.