PL EN


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 2 | 1-6
Article title

Removal of phenol from wastewater using activated waste tea leaves

Content
Title variants
Languages of publication
EN
Abstracts
EN
This investigation enumerates the treatment of phenol contaminated synthetic wastewater by Activated Waste Tea Leaves (AWTL). Phosphoric acid was used for the modification of waste tea leaves. The effects of initial pH, biosorbent dose, contact time, and initial phenol concentration were studied on the phenol uptake from the synthetic solution. Kinetic modelling was performed using pseudo 1st and 2nd order kinetics. The Langmuir and Freundlich’s Models were employed to interpret the AWTL behaviour at various mass transfer gradients. The results show that the optimum values for pH, biosorbent dose and contact time were 2.2 g/L and 180 minutes, respectively. Pseudo 2nd order kinetic and the Langmuir’s Models best described the kinetic and equilibrium behaviours, respectively.
Publisher
Year
Volume
15
Issue
2
Pages
1-6
Physical description
Dates
published
1 - 07 - 2013
online
10 - 07 - 2013
References
  • 1. Aksu, Z. & Akpinar, D. (2001). Competitive biosorption of phenol and chromium(VI) from binary mixtures onto dried anaerobic activated sludge, Biochem. Eng. J. 7, 183-193. DOI: 10.1016/S1369-703X(00)00126-1.[Crossref]
  • 2. Navarro, A.E., Portales, R.F., Sun-Kou, M.R. & Llanos, B.P. (2008). Effect of pH on phenol biosorption by marine seaweeds, J. Hazard. Mater. 156, 405-411. DOI: 10.1016/j. jhazmat.2007.12.039.[WoS][Crossref]
  • 3. Kumar, N.S. & Min, K. (2011). Phenolic compounds biosorption onto Schizophyllum commune fungus: FTIR analysis, kinetics and adsorption isotherms modelling, Chem. Eng. J. 168, 562-571. DOI: 10.1016/j.cej.2011.01.023.[Crossref]
  • 4. Aksu, Z. & Yener, J. (1998). Investigation of the biosorption of phenol and monochlorinated phenols on the dried activated sludge, Proces. Biochem. 33 (6), 649-655. DOI: 10.1016/ S0032-9592(98)00029-6.[Crossref]
  • 5. Rao, J.R. & Viraraghavan, T. (2002). Biosorption of phenol from an aqueous solution by Aspergillus niger biomass, Bioresour. Technol. 85, 165-171. DOI: 10.1016/S0960-8524(02)00079-2.[Crossref]
  • 6. Volesky, B. (2003). Sorption and Biosorption, Bv sorbex Inc., Montreal, 35-50.
  • 7. Aksu, Z. & Akpınar, D. (2000). Modelling of simultaneous biosorption of phenol and nickel(II) onto dried aerobic activated sludge, Sep. Purif. Technol. 21, 87-99. DOI:10.1016/ S1383-5866(00)00194-5.[Crossref]
  • 8. Auta, M. & Hameed, B.H. (2011). Preparation of waste tea activated carbon using potassium acetate as an activating 502-509. DOI: 10.1016/j.cej.2011.04.017.[Crossref]
  • 9. Wu, J. & Yu, H.Q.(2006). Biosorption of phenol and chlorophenols from aqueous solutions by fungal mycelia, Proces. Biochem. 41, 44-49. DOI: 10.1016/j.procbio.2005.03.065.[Crossref]
  • 10. Aksu, Z. & Yener, J. (2001). A comparative adsorption/ biosorption study of mono-chlorinated phenols onto various sorbents, Waste Manage. 21, 695-702. DOI: 10.1016/S0956- -053X(01)00006-X.[Crossref]
  • 11. Giahi, M., Rakhshaee, R. & Bagherinia, M.A. (2011). Removal of methylene blue by tea wastages from the synthesis waste waters, Chinese Chem. Lett. 22, 225-228. DOI: 10.1016/j. cclet.2010.07.030.[WoS][Crossref]
  • 12. Murugesan, G.S., Sathishkumar, M. & Swaminathan, K. (2006). Arsenic removal from groundwater by pretreated waste tea fungal biomass, Bioresour. Technol. 97, 483-487. DOI: 10.1016/j.biortech.2005.03.008.[Crossref]
  • 13. Hameed, B.H. (2009). Spent tea leaves: A new non- -conventional and low-cost adsorbent for removal of basic dye from aqueous solutions, J. Hazard. Mater. 161, 753-759. DOI: 10.1016/j.jhazmat.2008.04.019.[Crossref]
  • 14. Sanga, S., Lambertb, J.D., Hoc, C.T. & Yang, C.S. (2011). The chemistry and biotransformation of tea constituents, Pharmacol. Res. 64, 87- 99. DOI: 10.1016/j.phrs.2011.02.007.[Crossref]
  • 15. Kazmi, M., Feroze, N., Naveed, S. & Javed, S.H. (2011). Biosorption of copper(II) on prunus amygdalus shell: Characterization, biosorption size analysis, kinetics, equilibrium and mechanistic studies. Korean J. Chem. Eng., 28 (10), 2033-2040. DOI: 10.1007/s11814-011-0072-y.[Crossref]
  • 16. Feroze, N., Kazmi, M. & Ramzan, N. (2013). Dead immobilized Rhizopus Arrhizus as potential biosorbent for copper removal. Korean J. Chem. Eng., 30 (1), 95-100. DOI: 10.1007/s11814-012-0088-y.[Crossref][WoS]
  • 17. Nie, S.P. & Xie, M.Y. (2011). A review on the isolation and structure of tea polysaccharides and their bioactivities, FoodHydrocolloid. 25, 144-149. DOI: 10.1016/j.foodhyd.2010.04.010.[Crossref]
  • 18. Karak, T. & Bhagat, R.M. (2010). Trace elements in tea leaves, made tea and tea infusion: A review, Food Res. Int. 43, 2234-2252. DOI: 10.1016/j.foodres.2010.08.010.[WoS][Crossref]
  • 19. Malkoc, E. & Nuhoglu, Y. (2006). Fixed bed studies for the sorption of chromium(VI) onto tea factory waste, Chem. Eng. Sci. 61, 4363-4372. DOI:10.1016/j.ces.2006.02.005.[Crossref]
  • 20. Ho, Y.S. (2006). Review of second - order models for adsorption systems. J. Hazard. Mater., B136, 681-689. DOI: 10.1016/j.jhazmat.2005.12.043.[Crossref]
  • 21. Langmuir, I. (1918). The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc. 40, 1361-1403. DOI: 10.1021/ja02242a004.[Crossref]
  • 22. Freundlich, H. (1906). Über die adsorption in lösungen (Adsorption in solution), Z. Phys. Chem. 57, 384-470 [in German].
  • 23. Dahlquist, E.W. (1978). The meaning of Scatchard and Hill plots, in: CHW Hirs, SN Timmaseff (Eds.), Methods of Enzymology, Academic press, New York, 270 - 299.
Document Type
Publication order reference
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_pjct-2013-0016
Identifiers
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.