Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 1 | 51-60

Article title

Evaluation of Performance of Hybrid Photolysis-DCMD and Photocatalysis-DCMD Systems Utilizing UV-C Radiation for Removal of Diclofenac Sodium Salt From Water


Title variants

Languages of publication



The removal of a non-steroidal anti-inflammatory drug (NSAID) diclofenac sodium salt (DCF, C14H10Cl2NNaO2) from water in two hybrid systems coupling photolysis or photocatalysis with direct contact membrane distillation (DCMD) is presented. A UV-C germicidal lamp was used as a source of irradiation. The initial concentration of DCF was in the range of 0.005-0.15 mmol/dm3 and the TiO2 Aeroxide® P25 loading (hybrid photocatalysis-DCMD) ranged from 0.05 to 0.4 g/dm3. Regardless of the applied hybrid system and the initial concentration of DCF, the model drug was completely decomposed within 4h of irradiation or less. Mineralization was less efficient than photodecomposition. In case of the hybrid photolysis-DCMD process the efficiency of TOC degradation after 5h of irradiation ranged from 27.3-48.7% depending on the DCF initial concentration. The addition of TiO2 allowed to improve the efficiency of TOC removal. The highest degradation rate was obtained at 0.3 gTiO2/dm3. During the process conducted with the lowest DCF initial concentrations (0.005-0.025 mmol/dm3) a complete mineralization was obtained. However, when higher initial amounts of DCF were used (0.05-0.15 mmol/dm3), the efficiency of TOC degradation was in the range of 82.5-85%. The quality of distillate was high regardless of the system: DCF was not detected, TOC concentration did not exceeded 0.7 mg/dm3 (1.9 mg/dm3 in permeate) and conductivity was lower than 1.6 μS/cm.









Physical description


1 - 03 - 2013
27 - 03 - 2013


  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland
  • West Pomeranian University of Technology, Szczecin, Institute of Chemical and Environment Engineering, Department of Water Technology and Environment Engineering, ul. Pułaskiego 10, 70-322 Szczecin, Poland


  • 1. Ternes, T.A. (1998). Occurence of drugs in German sewage treatment plants and rivers. Water Res. 32 (11) 3245-3260. DOI: 10.1016/S0043-1354(98)00099-2.[Crossref]
  • 2. Halling-Sørensen, B., Nors Nielsen, S., Lanzky, P.F., Ingerslev, F., Holten Lützhøft, H.C. & Jørgensen, S.E. (1998). Occurrence, fate and effects of pharmaceutical substances in the environment - a review. Chemosphere. 36 (2) 357-393. DOI: 10.1016/S0045-6535(97)00354-8.[Crossref]
  • 3. Coelho, A.D., Sans, C., Agüera, A., Gómez, M.J., Esplugas, S., & Dezotti, M. (2009). Effects of ozone pre-treatment on diclofenac: Intermediates, biodegradability and toxicity assessment. Sci. Total Environ. 407, 3572-3578. DOI: 10.1016/j. scitotenv.2009.01.013.[Crossref][WoS]
  • 4. Rizzo, L., Meric, S., Kassinos, D., Guida, M., Russo, F. & Belgiorno, V. (2009). Degradation of diclofenac by TiO2 photocatalysis: UV absorbance kinetics and process evaluation through a set of toxicity bioassays. Water Res. 43, 979-988. DOI: 10.1016/j.watres.2008.11.040.[Crossref][WoS]
  • 5. Musa, K.A. & Eriksson, L.A. (2009). Photodegradation mechanism of the common non-steroid anti-inflammatory drug diclofenac and its carbazole photoproduct. Phys. Chem. Chem. Phys. 11, 4601-4610. DOI: 10.1039/B900144A.[WoS][Crossref]
  • 6. Czech, B. & Ćwikła-Bundyra, W. (2007). Band reactor for toxic and recalcitrant water contaminants. Pol. J. Chem. Technol. 9 (4) 18-20. DOI: 10.2478/v10026-007-0082-z.[Crossref]
  • 7. Garcia-Araya, J.F., Beltran, F.J. & Aguinaco, A. (2010). Diclofenac removal from water by ozone and photolytic TiO2 catalysed processes. J. Chem. Technol. Biotechnol. 85, 798-804. DOI: 10.1002/jctb.2363.[Crossref][WoS]
  • 8. Madhavan, J., Kumar, P.S.S., Anandan, S., Zhou, M., Grieser, F., & Ashokkumar, M. (2010). Ultrasound assisted photocatalytic degradation of diclofenac in an aqueous environment. Chemosphere. 80, 747-752. DOI: 10.1016/j.chemosphere. 2010.05.018.[Crossref]
  • 9. Ravina, M., Campanella, L. & Kiwi, J. (2002). Accelerated mineralization of the drug Diclofenac via Fenton reactions in a concentric photo-reactor. Water Res. 36, 3553-3560. DOI: 10.1016/S0043-1354(02)00075-1.[Crossref]
  • 10. Rivas, J., Gimeno, O., Borralho, T. & Beltrán, F. (2010). Influence of oxygen and free radicals promoters on the UV-254 nm photolysis of diclofenac. Chem. Eng. J. 163, 35-40. DOI: 10.1016/j.cej.2010.07.027.[Crossref][WoS]
  • 11. Martínez, C., Canle L.M., Fernández, M.I., Santaballa, J.A. & Faria J. (2011). Aqueous degradation of diclofenac by heterogeneous photocatalysis using nanostructured materials. Appl. Catal. B-Environ. 107, 110-118. DOI: 10.1016/j. apcatb.2011.07.003.[WoS][Crossref]
  • 12. Mozia, S. (2010). Photocatalytic membrane reactors (PMRs) in water and wastewater treatment. A review. Sep. Purif. Technol. 73, 71-91. DOI: 10.1016/j.seppur.2010.03.021.[Crossref]
  • 13. Ryu, J., Choi, W. & Choo, K.H. (2005). A pilot-scale photocatalyst-membrane hybrid reactor: performance and characterization. Water Sci. Technol. 51, 491-497.
  • 14. Shon, H.K., Phuntsho, S. & Vigneswaran, S. (2008). Effect of photocatalysis on the membrane hybrid system for wastewater treatment. Desalination. 225, 235-248. DOI: 10.1016/j.desal.2007.05.032.[Crossref]
  • 15. Sun, X., Zhang, J., Zhang, G., Pan, X. & Huang, T. (2012). Preparation and characteristics of TiO2 nanotube catalysts used in hybrid photocatalysis/membrane process. Catal. Commun. 18, 76-80. DOI: 10.1016/j.catcom.2011.11.026.[Crossref]
  • 16. Sarasidis, V.C., Patsios, S.I. & Karabelas. A.J. (2011). A hybrid photocatalysis-ultrafiltration continuous process: The case of polysaccharide degradation. Sep. Purif. Technol. 80, 73-80. DOI: 10.1016/j.seppur.2011.04.010.[Crossref][WoS]
  • 17. Grzechulska-Damszel, J., Mozia, S. & Morawski, A.W. (2010). Integration of photocatalysis with membrane processes for purification of water contaminated with organic dyes. Catal. Today. 156 (3-4), 295-300. DOI: 10.1016/j.cattod.2010.06.033.[WoS][Crossref]
  • 18. Grzechulska-Damszel, J. & Morawski, A.W. (2007). Removal of organic dye in the hybrid photocatalysis/membrane processes system. Pol. J. Chem. Technol. 9 (2) 94-98. DOI: 10.2478/v10026-007-0036-5.[Crossref]
  • 19. Molinari, R., Pirillo, F., Falco, M., Loddo, V. & Palmisano, L. (2004). Photocatalytic degradation of dyes by using a membrane reactor. Chem. Eng. Process. 43 (9) 1103-1114. DOI: 10.1016/j.cep.2004.01.008.[Crossref]
  • 20. Azrague, K., Aimar, P., Benoit-Marquie, F. & Maurette, M.T. (2007). A new combination of a membrane and a photocatalytic reactor for the depollution of turbid water. Appl. Catal. B- Environ. 72 (3-4) 197-204. DOI: 10.1016/j. apcatb.2006.10.007.[Crossref][WoS]
  • 21. Camera-Roda, G., Santarelli, F., Augugliaro, V., Loddo, V., Palmisano, G., Palmisano, L. & Yurdakal, S. (2011). Photocatalytic process intensification by coupling with pervaporation. Catal. Today. 161, 209-213. DOI: 10.1016/j.cattod.2010.10.052.[WoS][Crossref]
  • 22. Mozia, S., Tomaszewska, M. & Morawski, A.W. (2007). Photocatalytic membrane reactor (PMR) coupling photocatalysis and membrane distillation - Effectiveness of removal of three azo dyes from water. Catal. Today. 129, 3-8. DOI: 10.1016/j.cattod.2007.06.043.[WoS][Crossref]
  • 23. Mozia, S. (2010). Application of temperature modified titanate nanotubes for removal of an azo dye from water in a hybrid photocatalysis-MD process. Catal. Today. 156, 198-207. DOI: 10.1016/j.cattod.2010.02.026.[Crossref][WoS]
  • 24. Mozia, S., Tsumura, T., Toyoda, M. & Morawski, A.W. (2011). Degradation of ibuprofen sodium salt in a hybrid photolysis - membrane distillation system utilizing germicidal UVC lamp. J. Adv. Oxid. Technol. 14 (1) 31-39. DOI: 10.1016/j. cattod.2012.03.016.[Crossref]
  • 25. Mozia, S., Morawski, A.W. & Toyoda, M. (2012). The influence of solution composition on the effectiveness of degradation of ibuprofen sodium salt in a hybrid photocatalysis - membrane distillation system. J. Adv. Oxid. Technol. 15 (1) 21-.
  • 26. Mozia, S. & Morawski, A.W. (2012). The performance of a hybrid photocatalysis-MD system for the treatment of tap water contaminated with ibuprofen. Catal. Today. 193, 213-220. DOI: 10.1016/j.cattod.2012.03.016.[Crossref][WoS]
  • 27. Braslavsky, S.E., Braun, A.M., Cassano, A.E., Emeline, A.V., Litter, M.I., Palmisano, L., Parmon, V.N. & Serpone, N. (2011). Glossary of terms used in photocatalysis and radiation catalysis (IUPAC Recommendations 2011). Pure Appl. Chem. 83 (4) 931-1014. DOI: 10.1351/PAC-REC-09-09-36.[Crossref][WoS]
  • 28. Kim, I. & Tanaka, H. (2009). Photodegradation characteristics of PPCPs in water with UV treatment. Environ. Int. 35 (5) 793-802. DOI: 10.1016/j.envint.2009.01.00.[WoS][Crossref]
  • 29. Méndez-Arriaga, F., Esplugas, S. & Giménez, J. (2008). Photocatalytic degradation of non-steroidal anti-inflammatory drugs with TiO2 and simulated solar irradiation. Water Res. 42, 585-594. DOI: 10.1016/j.watres.2007.08.002.[WoS][Crossref]
  • 30. Agüera, A., Pérez Estrada, L.A., Ferrer, I., Thurman, E.M., Malato, S., & Fernández-Alba, A.R. (2005). Application of time-of-flight mass spectrometry to the analysis of phototransformation products of diclofenac in water under natural sunlight. J. Mass Spectrom. 40 (7) 908-915. DOI: 10.1002/ jms.867.[Crossref]
  • 31. Mozia, S. & Morawski, A.W. (2006). Hybridization of photocatalysis and membrane distillation forpurification of wastewater. Catal. Today 118, 181-188. DOI: 10.1016/j.cattod[Crossref]
  • 32. Herrmann, J.M. (2005). Heterogeneous photocatalysis state of the art and present applications. Top. Catal. 34 (1-4) 49- 65. DOI: 10.1007/s11244-005-3788-2.[Crossref]
  • 33. Achilleos, A., Hapeshi, E., Xekoukoulotakis, N.P., Mantzavinos, D. & Fatta-Kassinos, D. (2010). Factors affecting diclofenac decomposition in water by UV-A/TiO2 photocatalysis. Chem. Eng. J. 161, 53-59. DOI: 10.1016/j.cej.2010.04.020.[Crossref][WoS]
  • 34. Foo, K.Y. & Hameed, B.H. (2010). Insights into the modelling of adsorption isotherm systems, Chem. Eng. J. 156, 2-10, DOI: 10.1016/j.cej.2009.09.013.[Crossref]
  • 35. Lekkerkerker-Teunissen, K., Benotti, M.J., Snyder, S.A. & van Dijk, H.C. (2012). Transformation of atrazine, carbamazepine, diclofenac and sulfamethoxazole by low and medium pressure UV and UV/H2O2 treatment. Sep. Purif. Technol. 96, 33-43. DOI: 10.1016/j.seppur.2012.05.005.[Crossref][WoS]
  • 36. Calza, P., Sakkas, V.A., Medana, C., Baiocchi, C., Dimou, A., Pelizzetti, E. & Albanis, T. (2006). Photocatalytic degradation study of diclofenac over aqueous TiO2 suspensions. Appl. Catal. B-Environ. 67, 197-205. DOI: 10.1016/j.apcatb.2006.04.021.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.