Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2013 | 15 | 1 | 46-50

Article title

Enhancement of Solubility and Mass Transfer Coefficient of Benzoic Acid Through Hydrotropy


Title variants

Languages of publication



The effect of hydrotropes such as sodium salicylate, sodium benzoate, and nicotinamide on the solubility and mass transfer coefficient of benzoic acid has been investigated. The solubility studies were carried out under a wide range of hydrotrope concentrations (0 to 3.0 mol/L) and different system temperatures (303K to 333K). It has been observed that the solubility and mass transfer coefficient of benzoic acid increases with an increase in hydrotrope concentration and also with system temperature. A Minimum Hydrotrope Concentration (MHC) was found essential to initiate a significant increase in the solubility and the mass transfer coefficient. The maximum enhancement factor (φs), which is the ratio of the solubility value in the presence and absence of a hydrotrope, has been determined for all sets of experimentations. The solubility of benzoic acid has been enhanced to 19.98 times in the presence of 2.5 mol/L concentration of sodium salicylate hydrotrope at 333K.The effectiveness of hydrotropes was measured in terms of Setschenow constant Ks and the highest value has been observed as 0.502 for sodium salicylate.









Physical description


1 - 03 - 2013
27 - 03 - 2013


  • Department of Chemical Engineering, SSN College of Engineering, Chennai-603 110, India.
  • Department of Chemical Engineering, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Chennai 600062, India
  • Department of Chemical Engineering, A. C. College of Technology, Anna University, Chennai – 600 025, India


  • 1. Neuberg, C. (1916). Hydrotropy. Biochem. Z., 76: 107-108.
  • 2. Balasubramanian, D., Srinivas V., Gaikar, V.G. & Sharma, M.M. (1989). Aggregation Behaviour of Hydrotropic Compounds in Aqueous Solutions. J. Phys. Chem., 93, 3865-3870. DOI:10.1021/j100346a098.[Crossref]
  • 3. Srinivas, V., Rodley, G.A., Ravikumar, K., Robinson, W.T., Turbull, M.M. & Balasubramanian D. (1997). Molecular Organization in Hydrotrope Assemblies. Langmuir, 13: 3235-3239. DOI: 10.1021/la9609229.[Crossref]
  • 4. Bodhankar, S.S., Rajaramani, V. & Gaikar, V.G. (1998). Lipase Purification by Various Techniques and Its Thermo-Stability in the Presence of Surface Active Additives. J. Chem. Technol. Biotechnol., 71, 155-159. DOI: 10.1002/(SICI)1097- -4660(199802)71:2<155::AID-JCTB824>3.0.CO;2-1.[Crossref]
  • 5. Geeta, K.K., Tavare, N.S. & Gaikar, V.G. (1991). Separation of o/p-Chloronitrobenzenes through Hydrotropy. Chem. Eng. Comm., 102, 211-224. DOI: 10.1080/00986449108910857.[Crossref]
  • 6. Marimuthu, C., Jayakumar, C. & Nagendra Gandhi, N. (2011). Study of hydrotropy-Petroleum and Petrochemical Products. Petroleum Science and Technology, 29, 337-348. DOI:10.1080/10916460903330106.[Crossref]
  • 7. Gaikar, V.G. & Phatak, P.V. (1999). Selective Solubilisation of Isomers in Hydrotrope Solution o-/p-Chlorobenzoic acids and o-/p-Nitro anilines. Sep. Sci. Technol., 34, 439-459. DOI:10.1081/ss-100100660.[Crossref]
  • 8. Agrawal, S., Pancholi, S.S., Jain, N.K. & Agrawal, G.P. (2004). Hydrotropic Solubilization of nimesulide for parenteral administration. Int. J. Pharm., 274 149-155. DOI:10.1016/j.ijpharm.2004.01.012.[Crossref]
  • 9. Badwan, A.A., Khordagui, L.K.E. & Salesh, A.M. (1982). The Solubility of Benzodiazepines in Sodium Salicylate Solutions and a Proposed Mechanism for Hydrotropic Solubilization. Int. J. Pharm., 13, 67-74. DOI:10.1016/0378-5173(82)90143-0.[Crossref]
  • 10. Friberg, S.E., Yang, J. & Huang, T. (1996). Reversible Extraction Process of Phenyl Ethyl Alcohol, a Fragrance. Ind. Eng. Chem. Res., 35, 2856-2859. DOI:10.1021/ie950661i.[Crossref]
  • 11. Gaikar, V.G. & Phatak, P.V. (1993). Solubility o- and p- -Chlorobenzoic Acid in Hydrotrope Solutions. J. Chem. Eng. Data., 38: 217-220. DOI: 10.1021/je00010a007.[Crossref]
  • 12. Dandekar, D.V. & Gaikar, V.G. (2003). Hydrotropic Extraction of Curcuminoids from Turmeric. Sep. Sci. Technol., 38, 1185-1215. DOI:10.1081/SS-120018130.[Crossref]
  • 13. Dandekar, D.V., Jayaprakasha, G.K. & Patil, B.S. (2008). Hydrotropic extraction of bioactive limonin from sour orange (Citrus aurantium L.) seeds. Food Chem., 109, 515-520. DOI:10.1016/J.foodchem.2007.12.071.[Crossref][WoS]
  • 14. Friberg, S.E. & Brancewicz, C. (1994). O/W Microemulsions and Hydrotropes: The Coupling Action of a Hydrotrope. Langmuir, 10, 2945-2949. DOI: 10.1021/la00021a016.[Crossref]
  • 15. Srinivas, V. & Balasubramanian, D. (1998). When Does the Switch from Hydrotropy to Micellar Behavior Occur? Lagmuir. 14, 6658-6661. DOI: 10.1021/la980598c.[Crossref]
  • 16. Nagendra Gandhi, N., Dharmendira Kumar, M. & Sathyamurthy, N. (1998). Solubility and mass transfer coefficient enhancement of ethyl benzoate through hydrotropy. Hungarian J. Ind. Chem., 26, 63-68. http://www.vein.hu/HJIC/content/v26n1.html.
  • 17. Meyyappan, N. & Nagendra Gandhi, N. (2005). Solubility and mass transfer coefficient enhancement of benzyl benzoate in water through hydrotropy. J. Chem. Engg. Data, 50, 796-800. DOI:10.1021/je049756u.[Crossref]
  • 18. Gnana Prakash, D., Thenesh Kumar, S. & Nagendra Gandhi, N. (2009). Effect of hydrotropes on solubility and mass transfer coefficient of p-Nitrobenzoic acid. J. Applied Sci., 9, 2975-2980. DOI: 10.3923/jas.2009.2975.2980.[Crossref]
  • 19. Thenesh Kumar, S., Gnana Prakash, D. & Nagendra Gandhi, N. (2010). The effect of hydrotropes on the solubility and mass transfer coefficient of 2-nitrobenzoic acid. Pol. J. Chem. Tech., 11, 2, 55-59. DOI: 10.2478/v10026-009-0025-y.[Crossref]
  • 20. Gnana Prakash, D., Thenesh Kumar, S. & Nagendra Gandhi, N. (2010). Enhancement of solubility and mass transfer coefficient of 1,2-Dihydroxy-9,10-Anthraquinone (Alizarin) through hydrotropy. Chem. Eng. Comm., 197, 423-433. DOI: 10.1080/00986440903155998.[Crossref]
  • 21. Thenesh Kumar, S., Gnana Prakash, D. & Nagendra Gandhi, N. (2009). Effect of hydrotropes on solubility and mass transfer coefficient of Lauric acid. Korean J. Chem. Eng., 26: 1328-1333. DOI: 10.2478/s11814-009-0219-2.[Crossref][WoS]
  • 22. Thenesh Kumar, S., Gnana Prakash, D. & Nagendra Gandhi, N. (2010). Effect of hydrotropes on solubility and mass transfer coefficient of stearic acid. J. Chem. Eng. Data, 55, 2980-2984. DOI:10.1021/je90104n.[Crossref]
  • 23. Warth, A.D. (1991). Mechanism of action of benzoic acid on Zygosaccharomvces bailii: effect on glycolytic metabolite level, energy production, and intracellular pH. Appl. Environ. Microbiol., 57, 3410-3414. PMCID: PMC183988.
  • 24. John, R. Chipley. (2005). Antimicrobials in food. 3rd Edn., CRC Press, 11-48.
  • 25. Pastrorova, I., De Koster, C.G. & Boom, J.J. (1997). Analytic study of free and ester bound benzoic and cinnamic acids of gum benzoin resins by GC-MS HPLC-frit FABMS. Phytochem. Anal., 8, 63-73. DOI: 10.1002/(SICI)1099-1565(199703)8:2<63::AID-PCA337>3.0.CO;2-Y.[Crossref]
  • 26. Amand, C., Oliveria., Marcia, G., Coelho., Ricardo, F., Pires.; Moilton, R. & Franco, Jr. (2007). Solubility of benzoic acid in mixed solvents. J. Chem. Data, 52, 298-300. DOI: 10.1021/je060408x.[Crossref]
  • 27. Jia Qingzhu, Ma Peisheng., Yi Shouzhi, Wang Qiang, Wang Chang & Guiju, L.I. (2008). Solubilities of benzoic acid, p-Methylbenzoic acid, m-Methylbenzoic acid, o-Methylbenzoic acid, p-Hydroxybenzoic acid and o-Nitrobenzoic acids in 1-Octanol. J. Chem. Data, 53, 1278-1282. DOI: 10.1021/je700677d.[WoS]
  • 28. Berkant Kayan, Yu Yang, Edward, J., Lindquist & Murat Gizir, A. (2010). Solubility of benzoic and salicylic acids in subcritical water at temperatrures ranging from (298 to 473) J. Chem. Eng. Data, 55, 2229-2232. DOI: 10.1021/je900769d.[WoS][Crossref]
  • 29. Sahav, H., Kumar, S., Upadhyay, S.N. & Upadhya, Y.D. (1981). Solubility of benzoic acid in aqueous polymeric solutions. J. Chem. Eng. Data, 26, 181-183. DOI: 10.1021/je00024a027.[Crossref]
  • 30. Seidell, A. (1917). Solubilities of inorganic and organic substances. D.Van Nostrand: New York.
  • 31. Kannan, A. & Pathan, S.K. (2004). Enhancement of solid dissolution process. Chem. Eng. J., 102, 45-49. DOI:10.1016/j. cej.2004.01.022.[Crossref]
  • 32. Miguel, G.N.,Carla C.S.,Katia R.P., & Beatriz, E.G. (2007). The photophysical determination of the minimum hydrotrope concentration of aromatic hydrotropes. J. Colloid and InterfaceSci., 315, 810-813. DOI: 10.1016/j.jcis.2007.02.020.[Crossref]
  • 33. Wagle, V.B., Kothari, P.S. & Gaikar, V.G. (2007). Effect of temperature on aggregation behaviour of aqueous solution of sodium cumene sulfonate. J. Mol. Liq., 133, 68-76. DOI: 10.1016/j.molliq.2006.07.006.[Crossref]
  • 34. Huerta-Diaz, M.A. & Rodriguez, S. (1992). Solubility measurements and determination of Setschenow constants for the pesticide carbaryl in seawater and other electrolyte solutions. Can. J. Chem., 70, 2864-2868. DOI: 10.1139/v92-365.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.