Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Top-down peptidomics of bodily fluids


Title variants

Languages of publication



The naturally occurring peptides, mainly arising
from the proteolytic cleavage of larger proteins, play
several functions within the body (e. g. antihypertensive,
immuno-modulatory, anti-microbial and antiviral,
mineral carriers). Their presence or the increase of their
concentration could be connected to different pathologies
and thereby some peptides could be useful biomarkers
for the diagnosis or prognosis of the disease. Peptidome
research, particularly within biological fluids, therefore
represents one of the most interesting and challenging
purposes of proteomics. In this review we describe the
current state-of-the-art in peptidomics-based studies
of several human bodily fluids (serum, plasma, urine,
cerebrospinal fluid, saliva, tears, seminal fluid, vitreous
humor, pancreatic juice), emphasizing the contribution
of top-down proteomic platforms to the deep structural
characterization of natural peptides and their posttranslational








Physical description


28 - 3 - 2014
5 - 12 - 2013
9 - 7 - 2014


  • Istituto di Biochimica
    e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del
    Sacro Cuore, Largo F. Vito, 00168, Roma, Italy
  • Istituto di Biochimica
    e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del
    Sacro Cuore, Largo F. Vito, 00168, Roma, Italy
  • Istituto di Biochimica
    e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del
    Sacro Cuore, Largo F. Vito, 00168, Roma, Italy
  • Dipartimento di
    Scienze della Vita e dell‘Ambiente, Università di Cagliari, Monserrato
    (CA), Italy
  • Dipartimento di
    Scienze della Vita e dell‘Ambiente, Università di Cagliari, Monserrato
    (CA), Italy
  • Istituto di Chimica del
    Riconoscimento Molecolare – UOS Roma, Consiglio Nazionale delle
    Ricerche, Roma, Italy
  • Dipartimento di
    Scienze della Vita e dell‘Ambiente, Università di Cagliari, Monserrato
    (CA), Italy
  • Istituto di Biochimica
    e Biochimica Clinica, Facoltà di Medicina, Università Cattolica del
    Sacro Cuore, Largo F. Vito, 00168, Roma, Italy
  • Istituto di Chimica del
    Riconoscimento Molecolare – UOS Roma, Consiglio Nazionale delle
    Ricerche, Roma, Italy


  • [1] Giardina B., Messana I., Scatena R., Castagnola M., The multiple functions of hemoglobin, Crit. Rev. Biochem. Mol. Biol., 1995; 30, 165-196.[Crossref]
  • [2] Zhao Q., Garreau I., Sannier F., Piot J. M., Opioid peptides derived from hemoglobin: hemorphins, Biopolymers, 1997; 43, 75-98.[Crossref]
  • [3] Nyberg F., Sanderson K., Glämsta E. L., The hemorphins: a new class of opioid peptides derived from the blood protein hemoglobin, Biopolymers, 1997; 43, 147-156.[Crossref]
  • [4] Messana I., Cabras T., Iavarone F., Vincenzoni F., Urbani A., Castagnola M., Unraveling the different proteomic platforms, J. Sep. Sci., 2013;36, 128-139.[Crossref]
  • [5] Tran J. C., Zamdborg L., Ahlf D. R., Lee J. E., Catherman A. D., Durbin K. R., et al., Mapping intact protein isoforms in discovery mode using top-down proteomics, Nature, 2011; 480, 254-258.
  • [6] Omenn G. S., Menon R., Adamski M., Blackwell T., Haab B. B., Gao W., et al., The Human Plasma and Serum Proteome, in: V. Thongboonkerd (Ed.), Proteomics of human body fluids, Humana Press, Totowa, New Jersey, 2007, 10.
  • [7] Liotta L. A., Ferrari M., Petricoin E., Clinical proteomics: written in blood, Nature, 2003; 425, 905.
  • [8] Shen Y., Liu T., Tolić N., Petritis B. O., Zhao R., Moore R. J., et al., Strategy for degradomic-peptidomic analysis of human plasma, J. Proteome Res., 9: 2339-2346.
  • [9] Tammen H., Schulte I., Hess R., Menzel C., Kellmann M., Mohring T., et al., Peptidomic analysis of human blood specimens: Comparison between plasma specimens and serum by differential peptide display, Proteomics, 2005; 5, 3414-3422.[Crossref]
  • [10] Tammen H., Hess R., Collection and handling of blood specimens for peptidomics, Methods Mol. Biol., 2011; 728, 151-159.
  • [11] Omenn G. S., States D. J., Adamski M., Blackwell T. W., Menon R., Hermjakob H., et al., Overview of the HUPO Plasma Proteome Project: results from the pilot phase with 35 collaborating laboratories and multiple analytical groups, generating a core dataset of 3020 proteins and a publicly-available database, Proteomics, 2005; 5, 3226-3245.
  • [12] Rai A. J., Gelfand C. A., Haywood B. C., Warunek D. J., Yi J., Schuchard M. D., et al., HUPO Plasma Proteome Project specimen collection and handling: towards the standardization of parameters for plasma proteome samples, Proteomics, 2005; 5, 3262-3277.[Crossref]
  • [13] Villanueva J., Philip J., Chaparro C. A., Li Y., Toledo-Crow R., DeNoyer L., et al., Correcting Common Errors in Identifying Cancer-Specific Serum Peptide Signatures, J. Proteome Res., 2005; 4, 1060-1072.[Crossref]
  • [14] Luque-Garcia J. L., Neubert T. A., Sample preparation for serum/plasma profiling and biomarker identification by mass spectrometry, J. Chromatogr. A, 2007; 1153, 259-276.
  • [15] Petricoin E.F., Belluco C., Araujo R. P., Liotta L. A., The blood peptidome: another dimension of information content for cancer biomarker discovery, Nature Rev. Cancer, 2006; 6, 961–967.[Crossref]
  • [16] D’Imperio M., Della Corte A., Facchiano A., Di Michele M., Ferrandina G., et al., Standardized sample preparation phases for a quantitative measurement of plasma peptidome profiling by MALDI-TOF, J. Proteomics, 2010; 73, 1355-1367.[Crossref]
  • [17] Aristoteli L. P., Molloy M. P., Baker M. S., Evaluation of endogenous plasma peptide extraction methods for mass spectrometric biomarker discovery, J. Proteome Res., 2007; 6, 571-581.[Crossref]
  • [18] Tanaka K., Tsugawa N., Kim Y. O., Sanuki N., Takeda U., L. J. Lee, A new rapid and comprehensive peptidome analysis by one-step direct transfer technology for 1-D electrophoresis/MALDI mass spectrometry, Biochem. Biophys. Res. Commun., 2009; 379, 110-114.
  • [19] Hansen H. G., Overgaard J., Lajer M., Hubalek F., Højrup P., Pedersen L., et al., Finding diabetic nephropathy biomarkers in the plasma peptidome by high-throughput magnetic bead processing and MALDI-TOF-MS analysis, Proteomics Clin. Appl., 2010; 4, 697-705.[Crossref]
  • [20] Potier D. N., Griffiths J. R., Unwin R. D., Walker M. J., Carrick E., Willamson A. J., et al., An Assessment of Peptide Enrichment Methods Employing mTRAQ Quantification Approaches, Anal. Chem., 2012; 84, 5604−5610.[Crossref]
  • [21] Bakun M., Karczmarski J., Poznanski J., Rubel T., Rozga M., Malinowska A., et al., An integrated LC-ESI-MS platform for quantitation of serum peptide ladders. Application for colon carcinoma study, Proteomics Clin. Appl., 2009; 3, 932-946.[Crossref]
  • [22] Richter R., Schulz-Knappe P., Schrader M., Ständker L., Jürgens M., Tammen H., et al., Composition of the peptide fraction in human blood plasma: database of circulating human peptides, J. Chromatogr. B Biomed. Sci. Appl., 1999; 726, 25-35.
  • [23] Varesio E., Rudaz S., Krause K-H., Veuthey J-L., Nanoscale liquid chromatography and capillary electrophoresis coupled to electrospray mass spectrometry for the detection of amyloid-β peptide related to Alzheimer’s disease, J. Chromatogr. A, 2002; 974, 135-142.
  • [24] Picou R. A., Kheterpal I., Wellman A. D., Minnamreddy M., Ku G., Gilman S. D., Analysis of Aβ (1-40) and Aβ (1-42) monomer and fibrils by capillary electrophoresis, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2011; 879, 627-632.
  • [25] Rosén C., Hansson O., Blennow K., Zetterberg H., Fluid biomarkers in Alzheimer’s disease-current concepts, Mol. Neurodegener., 2013; 8, 20 http://www.molecularneurodegeneration.com/content/8/1/20
  • [26] Irizarry M. C., Biomarkers of Alzheimer Disease in Plasma, NeuroRx., 2004 , 1, 226-234.
  • [27] Hu W.T., Holtzman D. M., Fagan A. M., Shaw L. M., Perrin R., Arnold S. E., et al., Plasma multianalyte profiling in mild cognitive impairment and Alzheimer disease, Neurology, 2012; 79, 897-905.[Crossref]
  • [28] Crockford D., Turjman N., Allan C., Angel J., Thymosin beta4: structure, function, and biological properties supporting current and future clinical applications, Ann. N. Y. Acad. Sci., 2010; 119, 179-189.[Crossref]
  • [29] Mannherz H. G., Hannappel E., The β-thymosins: intracellular and extracellular activities of a versatile actin binding protein family, Cell. Motil. Cytoskel., 2009; 66, 839-851.[Crossref]
  • [30] Bock-Marquette I., Saxena A., White M. D., Dimaio J. M., Srivastava D., Thymosin beta4 activates integrin-linked kinase and promotes cardiac cell migration, survival and cardiac repair, Nature, 2004; 432, 466-472.
  • [31] Sosne G., Qiu P., Goldstein A. L., Wheater M., Biological activities of thymosin β4 defined by active sites in short peptide sequenze, FASEB J., 2010; 24, 2144-2151.[Crossref]
  • [32] Hannappel E., Thymosin β4 and its posttranslational modifications, Ann. N. Y. Acad. Sci., 2010; 1194, 27-35.
  • [33] Plavina T., Hincapie M., Wakshull E., Subramanyam M., Hancock W. S., Increased plasma concentrations of cytoskeletal and Ca2+-binding proteins and their peptides in psoriasis patients, Clin. Chem., 2008; 54, 1805-1814.[Crossref]
  • [34] Zheng X., Wu S. L., Hincapie M., Hancock W. S., Study of the human plasma proteome of rheumatoid arthritis, J. Chromatogr. A, 2009; 1216, 3538-3545.
  • [35] Villanueva J., Philip J., Entenberg D., Chaparro C. A., Tanwar M. K., Holland E. C., et al., Serum peptide profiling by magnetic particle-assisted, automated sample processing and MALDI-TOF mass spectrometry, Anal. Chem., 2004; 76, 1560–1570.[Crossref]
  • [36] Villanueva J., Martorella A. J., Lawlor K., Philip J., Fleisher M., Robbins R. J., et al., Serum Peptidome Patterns That Distinguish Metastatic Thyroid Carcinoma from Cancer-free Controls Are Unbiased by Gender and Age, Mol. Cell. Proteomics, 2006; 5, 1840–1852.[Crossref]
  • [37] Fiedler G. M., Leichtle A. B., Kase J., Baumann S., Ceglarek U., Felix K., et al., Serum Peptidome Profiling Revealed Platelet Factor 4 as a Potential Discriminating Peptide Associated with Pancreatic Cancer, Clin. Cancer Res., 2009; 15, 3812-3819.[Crossref]
  • [38] Antwi K., Hostetter G., Demeure M. J., Katchman B. A., Decker G. A., Ruiz Y., et al., Analysis of the plasma peptidome from pancreas patients connects a peptide in plasma to overexpression of the parent protein in tumors, J. Proteome Res., 2009; 8, 4722-4731. [Crossref]
  • [39] Shen Y., Tolic´ N., Liu T., Zhao R., Petritis B. O., Gritsenko M. A., et al., Blood Peptidome-Degradome Profile of Breast Cancer, PLoS ONE 2010; 5(10): e13133. doi:10.1371/journal.pone.0013133[Crossref]
  • [40] Villanueva J., Shaffer D. R., Philip J., Chaparro C. A., Erdjument-Bromage H., Olshen A. B., et al., Differential exoprotease activities confer tumor-specific serum peptidome patterns, J. Clin. Investig., 2006; 116, 271–284.
  • [41] Bassani-Sternberg M., Barnea E., Beer I., Avivi I., Katz T., Admon A., Soluble plasma HLA peptidome as a potential source for cancer biomarkers, Proc. Natl. Acad. Sci. U S A., 2010; 107, 18769-18776.[Crossref]
  • [42] Ueda K., Saichi N., Takami S., Kang D., Toyama A., Daigo Y., et al., A Comprehensive Peptidome Profiling Technology for the Identification of Early Detection Biomarkers for Lung Adenocarcinoma, PLoS ONE 2011; 6(4): e18567. doi:10.1371/journal.pone.0018567[Crossref]
  • [43] Pisitkun T., Johnstone R., Discovery of Urinary Biomarkers, Mol. Cell Proteomics, 2006; 5, 1760-1771.[Crossref]
  • [44] Farrah T., Deutsch E. W., Omenn G. S., Sun Z., Watts J. D., Yamamoto T., et al., State of the Human Proteome in 2013 as Viewed through PeptideAtlas: Comparing the Kidney, Urine, and Plasma Proteomes for the Biology- and Disease-Driven Human Proteome Project, J. Proteome Res., 2014; 13, 60-75.
  • [45] Thongboonkerd V., Cutillas P. R., Unwin R. J., Schaub S., Nickerson P., Haubitz M., et al., Proteomics of Human Urine, in: V. Thongboonkerd (Ed.), Proteomics of human body fluids, Humana Press, Totowa, New Jersey, 2007, 11.
  • [46] Decramer S., de Peredo A. G., Breuil B., Mischak H., Monsarrat B., Bascands J.-L., Urine in Clinical Proteomics, Mol. Cell. Proteomics, 2008; 7, 1850-1862.[Crossref]
  • [47] Zuppi C., Messana I., Forni F., Rossi C., Pennacchietti L., Ferrari F., et al., H NMR spectra of normal urines: Reference ranges of the major metabolites, Clin. Chim. Acta, 1997; 265,85-97.
  • [48] Husi H., Barr J. B., Skipworth R. J. E., Stephens N. A., Greig C. A., Wackerhage H., et al., The Human Urinary Proteome Fingerprint Database UPdb, Int. J. Proteomics, 2013; http://dx.doi.org/10.1155/2013/760208[Crossref]
  • [49] Good D. M., Zürbig P., Argilés A., Bauer H. W., Behrens G., Coon J. J., et al., Naturally Occurring Human Urinary Peptides for Use in Diagnosis of Chronic Kidney Disease, Mol. Cell. Proteomics, 2010; 9, 2424–2437.[Crossref]
  • [50] Desiderio C., Rossetti D. V., Iavarone F., Messana I., Castagnola M.,Capillary electrophoresis–mass spectrometry: Recent trends in clinical proteomics, J. Pharma. Biomed. Anal., 2010; 53, 1161–1169.[Crossref]
  • [51] Stalmach A., Albalat A., Mullen W., Mischak H., Recent advances in capillary electrophoresis coupled to mass spectrometry for clinical proteomic applications, Electrophoresis, 2013; 34, 1452–1464.[Crossref]
  • [52] Latosinska A., Frantzi M., Vlahou A., Mischak H., Clinical applications of capillary electrophoresis coupled to mass spectrometry in biomarker discovery: Focus on bladder cancer, Proteomics Clin. Appl., 2013; 7, 779-793.[Crossref]
  • [53] Schaub S., Wilkins J., Weiler T., Sangster K., Rush D., Nickerson P., Urine protein profiling with surface-enhanced laser-desorption /ionization time-of-flight mass spectrometry, Kidney Int., 2004; 65, 323–332.[Crossref]
  • [54] Fiedler G. M., Baumann S., Leichtle A., Oltmann A., Kase J., Thiery J., et al., Standardized Peptidome Profiling of Human Urine by Magnetic Bead Separation and Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry, Clin. Chem., 2007; 53, 421–428. [Crossref]
  • [55] Zhao M., Deng C., Zhang X., Yang P., Facile synthesis of magnetic metal organic frameworks for the enrichment of low-abundance peptides for MALDI-TOF MS analysis, Proteomics, 2013; 13, 3387-3392.[Crossref]
  • [56] Albalat A., Stalmach A., Bitsika V., Siwy J., Schanstra J. P., Petropoulos A. D., et al., Improving peptide relative quantification in MALDI-TOF MS for biomarker assessment, Proteomics, 2013; 13, 2967-2975.
  • [57] Suárez E. R., Siwy J., Zürbig P., Mischak H., Urine as a source for clinical proteome analysis; From discovery to clinical application, Biochim. Biophys. Acta, 2014; 1844, 884-898.
  • [58] Adachi J., Kumar C., Zhang Y., Olsen J. V., Mann M; The human urinary proteome contains more than 1500 proteins, including a large portion of membrane proteins, Genome Biol., 2006; 7, R80. http://genomebiology.com/2006/7/9/R80[Crossref]
  • [59] Sauvage F.-L., Gastinel L. N., Marquet P., Untargeted screening of urine peptides with liquid chromatography coupled to hybrid linear-ion trap mass spectrometry, J. Chromatogr. A, 2012; 1259, 138-147.
  • [60] Kentsis A., Monigatti K., Dorff K., Campagne F., Bachur R., Steen H., Urine proteomics for profiling of human disease using high accuracy mass spectrometry, Proteomics Clin. Appl., 2009; 3, 1052-1061. [Crossref]
  • [61] Djukanović L., Djordjević V., Ležaić V., Cukuranović R., Marić I., Bukvić D., et al., Urinary protein patterns in patients with Balkan endemic nephropathy, Int. Urol. Nephrol., 2013; 45, 1661-1669.[Crossref]
  • [62] Bruschi M., Santucci L., Candiano G., Ghiggeri G. M., Albumin heterogeneity in low-abundance fluids. The case of urine and cerebro-spinal fluid, Biochim. Biophys. Acta, 2013; 1830, 5503-5508.
  • [63] Merchant M. L., Perkins B. A., Boratyn G. M., Ficociello L. H., Wilkey D. W., Barati M. T., et al., Urinary Peptidome May Predict Renal Function Decline in Type 1 Diabetes and Microalbuminuria, J. Am. Soc. Nephrol., 2009; 20, 2065–2074.
  • [64] Kistler A. D., Serra A. L., Siwy J., Poster D., Krauer F., Torres V. E., et al., Urinary Proteomic Biomarkers for Diagnosis and Risk Stratification of Autosomal Dominant Polycystic Kidney Disease: A Multicentric Study, PLoS ONE 2013; 8(1): e53016. doi:10.1371/journal.pone.0053016[Crossref]
  • [65] Ling X. B., Sigdel T. K., Lau K., Ying L., Lau I., Schilling J., et al., Integrative Urinary Peptidomics in Renal Transplantation Identifies Biomarkers for Acute Rejection, J. Am. Soc. Nephrol., 2010; 21, 646–653.[Crossref]
  • [66] Pérez V., Sánchez A., Bayés B., Navarro-Muñoz M., Lauzurica R., Pastor M. C., Romero R., Effect of Paricalcitol on the Urinary Peptidome of Kidney Transplant Patients, Transplant. Proc., 2010; 42, 2924–2927.[Crossref]
  • [67] Theodorescu D., Wittke S., Ross M. M., Walden M., Conaway M., Just I., et al., Discovery and validation of new protein biomarkers for urothelial cancer: a prospective analysis, Lancet Oncol., 2006; 7, 230–240.[Crossref]
  • [68] Theodorescu D., Schiffer E., Bauer H. W., Douwes F., Eichhorn F., Polley R., et al., Discovery and validation of urinary biomarkers for prostate cancer, Proteomics Clin. Appl., 2008; 2, 556–570.[Crossref]
  • [69] Schiffer E., Vlahou A., Petrolekas A., Stravodimos K., Tauber R., Geschwend J., et al.,Prediction of Muscle-invasive Bladder Cancer Using Urinary Proteomics, Clin. Cancer Res., 2009; 15, 4935-4943.[Crossref]
  • [70] Franzti M., Metzger J., Banks R. E., Husi H., Klein J., Dakna M., et al., Discovery and validation of urinary biomarkers for detection of renal cell carcinoma, J. Proteomics, 2014; 98, 44-58.
  • [71] Miller G. J., Bauer K. A., Howarth D. J., Cooper J. A., Humphries S. E., Rosenberg R. D., Increased incidence of neoplasia of the digestive tract in men with persistent activation of the coagulant pathway, J. Thromb. Haemost., 2004; 2, 2107–2114.[Crossref]
  • [72] Metzger J., Negm A. A., Plentz R. R., Weismüller T. J., Wedemeyer J., Karlsen T. H., et al., Urine proteomic analysis differentiates cholangiocarcinoma from primary sclerosing cholangitis and other benign biliary disorders, Gut, 2013; 62, 122-130.[Crossref]
  • [73] Ling X. B., Lau K., Deshpande C., Park J. L., Milojevic D., Macaubas C., et al, Urine Peptidomic and Targeted Plasma Protein Analyses in the Diagnosis and Monitoring of Systemic Juvenile Idiopathic Arthritis, Clin. Proteom., 2010; 6, 175–193.[Crossref]
  • [74] Xiao D., Meng F. L., He L. H., Gu Y. X., Zhang J. Z., Analysis of the urinary peptidome associated with Helicobacter pylori infection, World J. Gastroenterol., 2011; 17, 618-624.
  • [75] Mainini V., Gianazza E., Chinello C., Bilo G., Revera M., Giuliano A., et al., Modulation of urinary peptidome in humans exposed to high altitude hypoxia, Mol. Biosyst., 2012; 8, 959-66.[Crossref]
  • [76] Delles C., Schiffer E., von Zur Muhlen C., Peter K., Rossing P., Parving H. H., et al., Urinary proteomic diagnosis of coronary artery disease: identification and clinical validation in 623 individuals, J. Hypertens., 2010; 28, 2316-2322.
  • [77] Ramstrom M., Bergquist J., Proteomics of Human Cerebrospinal Fluid, in: V. Thongboonkerd (Ed.), Proteomics of Human Body Fluids: Principles, Methods, and Applications, Humana Press Inc, Totowa, NJ, 2007, 12.
  • [78] Yuan X., Desiderio D. M., Proteomics analysis of human cerebrospinal fluid, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2005; 815, 179-189.
  • [79] Ekegren T., Hanrieder J., Bergquist J., Clinical perspectives of high-resolution mass spectrometry-based proteomics in neuroscience: exemplified in amyotrophic lateral sclerosis biomarker discovery research, J. Mass Spectrom., 2008; 43, 559-571. [Crossref]
  • [80] Kroksveen A. C., Opsahl J. A., Aye T. T., Ulvik R.J., Berven F. S., Proteomics of human cerebrospinal fluid: discovery and verification of biomarker candidates in neurodegenerative diseases using quantitative proteomics, J. Proteomics, 2011; 74, 371-388. [Crossref]
  • [81] Simonsen A.H., Bahl J.M., Danborg P.B., Lindstrom V., Larsen S.O., Grubb A., et al., Pre-analytical factors influencing the stability of cerebrospinal fluid proteins, J. Neurosci. Methods., 2013; 215, 234-240.
  • [82] Pesek J., Krüger T., Krieg N., Schiel M., Norgauer J., Großkreutz J., et al., Native chromatographic sample preparation of serum, plasma and cerebrospinal fluid does not comprise a risk for proteolytic biomarker loss., J. Chromatogr. B, 2013; 923-924, 102-109.
  • [83] Yuan X., Desiderio D. M., Human cerebrospinal fluid peptidomics, J. Mass Spectrom., 2005; 40, 176-181.[Crossref]
  • [84] Möhring T., Kellmann M., Jürgens M., Schrader M., Top-down identification of endogenous peptides up to 9 kDa in cerebrospinal fluid and brain tissue by nanoelectrospray quadrupole time-of-flight tandem mass spectrometry, J. Mass Spectrom., 2005; 40, 214-226.[Crossref]
  • [85] Heine G., Zucht H.D., Schuhmann M.U., Bürger K., Jürgens M., Zumkeller M., et al., High-resolution peptide mapping of cerebrospinal fluid: a novel concept for diagnosis and research in central nervous system diseases, J. Chromatogr. B Analyt. Technol. Biomed. Life Sci., 2002; 782, 353-361.
  • [86] Zougman A., Pilch B., Podtelejnikov A., Kiehntopf M., Schnabel C., Kumar C, et al., Integrated analysis of the cerebrospinal fluid peptidome and proteome, J. Proteome Res., 2008; 7, 386-399. [Crossref]
  • [87] Hölttä M., Zetterberg H., Mirgorodskaya E., Mattsson N., Blennow K., Gobom J., Peptidome analysis of cerebrospinal fluid by LC-MALDI MS, PLoS ONE 2012; 7(8): e42555. doi:10.1371/journal.pone.0042555[Crossref]
  • [88] Zürbig P., Jahn H., Use of proteomic methods in the analysis of human body fluids in Alzheimer research, Electrophoresis, 2012; 33, 3617-3630. [Crossref]
  • [89] Lewczuk P., Esselmann H., Meyer M., Wollscheid V., Neumann M., Otto M., et al., The amyloid-beta (Abeta) peptide pattern in cerebrospinal fluid in Alzheimer’s disease: evidence of a novel carboxyterminally elongated Abeta peptide, Rapid Commun. Mass Spectrom., 2003; 17, 1291-1296.
  • [90] Maddalena A. S., Papassotiropoulos A., Gonzalez-Agosti C., Signorell A., Hegi T., Pasch T., et al., Cerebrospinal fluid profile of amyloid beta peptides in patients with Alzheimer’s disease determined by protein biochip technology, Neurodegener. Dis., 2004; 1, 231-235.[Crossref]
  • [91] Portelius E., Westman-Brinkmalm A., Zetterberg H., Blennow K., Determination of beta-amyloid peptide signatures in cerebrospinal fluid using immunoprecipitation-mass spectrometry, J. Proteome Res., 2006; 5, 1010-1016.[Crossref]
  • [92] Portelius E., Zetterberg H., Andreasson U., Brinkmalm G., Andreasen N., Wallin A., et al., An Alzheimer’s disease-specific beta-amyloid fragment signature in cerebrospinal fluid, Neurosci. Lett., 2006; 409, 215-9.
  • [93] Portelius E., Tran A.J., Andreasson U., Persson R., Brinkmalm G., Zetterberg H., et al., Characterization of amyloid beta peptides in cerebrospinal fluid by an automated immunoprecipitation procedure followed by mass spectrometry, J. Proteome Res., 2007; 6, 4433-4439. [Crossref]
  • [94] Portelius E., Andreasson U., Ringman J.M., Buerger K., Daborg J., et al., Distinct cerebrospinal fluid amyloid beta peptide signatures in sporadic and PSEN1 A431E-associated familial Alzheimer’s disease, Mol. Neurodegener., 2010; 5, 2. http://www.molecularneurodegeneration.com/content/5/1/2
  • [95] Haußmann U., Jahn O., Linning P., Janßen C., Liepold T., Portelius E., et al., Analysis of amino-terminal variants of amyloid-β peptides by capillary isoelectric focusing immunoassay, Anal. Chem. 2013; 85, 8142-8149. [Crossref]
  • [96] Lame M. E., Chambers E. E., Blatnik M., Quantitation of amyloid beta peptides Aβ(1-38), Aβ(1-40), and Aβ(1-42) in human cerebrospinal fluid by ultra-performance liquid chromatography-tandem mass spectrometry, Anal. Biochem., 2011; 419, 133-139.
  • [97] Mesbah K., Verpillot R., de L’escaille F., Falmagne J. B., Taverna M., Contribution of CE to the analysis of protein or peptide biomarkers, Methods Mol. Biol., 2013; 984, 167-190.
  • [98] Wijte D., McDonnell L. A., Balog C. I., Bossers K., Deelder A.M., Swaab D. F., et al., A novel peptidomics approach to detect markers of Alzheimer’s disease in cerebrospinal fluid, Methods, 2012; 56, 500-507. [Crossref]
  • [99] Albertini V., Benussi L., Paterlini A., Glionna M., Prestia A., Bocchio-Chiavetto L., et al., Distinct cerebrospinal fluid amyloid-beta peptide signatures in cognitive decline associated with Alzheimer’s disease and schizophrenia., Electrophoresis, 2012; 33, 3738-3744. [Crossref]
  • [100] von Neuhoff N., Oumeraci T., Wolf T., Kollewe K., Bewerunge P., Neumann B., et al., Monitoring CSF proteome alterations in amyotrophic lateral sclerosis: obstacles and perspectives in translating a novel marker panel to the clinic. PLoS ONE 2012; 7, e44401. doi:10.1371/journal.pone.0044401[Crossref]
  • [101] Augutis K., Axelsson M., Portelius E., Brinkmalm G., Andreasson U., Gustavsson M.K., et al., Cerebrospinal fluid biomarkers of β-amyloid metabolism in multiple sclerosis, Mult. Scler., 2013; 19, 543-552. [Crossref]
  • [102] Kalinina J., Peng J., Ritchie J. C., Van Meir E. G., Proteomics of gliomas: initial biomarker discovery and evolution of technology, Neuro. Oncol., 2011; 13, 926-492. [Crossref]
  • [103] Desiderio C., D’Angelo L., Rossetti D. V., Iavarone F., Giardina B., Castagnola M., et al., Cerebrospinal fluid top-down proteomics evidenced the potential biomarker role of LVV- and VV-hemorphin-7 in posterior cranial fossa pediatric brain tumors, Proteomics, 2012; 12, 2158-2166.
  • [104] Zeccola M., Longhi R., Rossetti D. V., D’Angelo L., Tamburrini G., Di Rocco C., et al., Development and validation of a capillary electrophoresis tandem mass spectrometry analytical method for the determination of Leu-Val-Val- and Val-Val-hemorphin-7 peptides in cerebrospinal fluid, J. Chromatogr. A, 2012; 1267, 170-177.
  • [105] Jahn H., Wittke S., Zürbig P., Raedler T. J., Arlt S., Kellmann M., et al., Peptide fingerprinting of Alzheimer’s disease in cerebrospinal fluid: identification and prospective evaluation of new synaptic biomarkers, PLoS One, 2011; 6, e26540. doi:10.1371/journal.pone.0026540 [Crossref]
  • [106] Messana I., Inzitari R., Fanali C., Cabras T., Castagnola M., Facts and artifacts in proteomics of body fluids. What proteomics of saliva is telling us?, J. Sep. Sci., 2008; 31, 1948-1963.[Crossref]
  • [107] Helmerhorst E. J., Oppenheim F. G., Saliva: a dynamic proteome, J. Dent. Res., 2007; 86, 680-693.[Crossref]
  • [108] Messana I., Cabras T., Pisano E., Sanna M. T., Olianas A., Manconi B., et al., Trafficking and postsecretory events responsible for the formation of secreted human salivary peptides: a proteomics approach, Mol. Cell. Proteomics, 2008; 7, 911-926. [Crossref]
  • [109] Messana I., Cabras T., Inzitari R., Lupi A., Zuppi C., Olmi C., et al.,Characterization of the human salivary basic proline-rich protein complex by a proteomic approach, J. Proteome Res., 2004; 3, 792-800.[Crossref]
  • [110] Inzitari R., Cabras T., Onnis G., Olmi C., Mastinu A., Sanna M. T., et al., Different isoforms and post-translational modifications of human salivary acidic proline-rich proteins, Proteomics, 2005; 5, 805-815.[Crossref]
  • [111] Oppenheim F. G., Xu T., McMillian F. M., Levitz S. M., Diamond R. D., Offner G. D., et al., Histatins, a novel family of histidine-rich proteins in human parotid secretion. Isolation, characterization, primary structure, and fungistatic effects on Candida albicans, J. Biol. Chem., 1988; 263, 7472-7477.
  • [112] Castagnola M., Inzitari R., Rossetti D. V., Olmi C., Cabras T., Piras V., et al., A cascade of 24 histatins (histatin 3 fragments) in human saliva. Suggestions for a pre-secretory sequential cleavage pathway, J. Biol. Chem., 2004; 279, 41436-41443.
  • [113] Cabras T., Fanali C., Monteiro J. A., Amado F., Inzitari R., Desiderio C., et al., Tyrosine polysulfation of human salivary histatin 1. A post-translational modification specific of the submandibular gland, J. Proteome Res., 2007; 6, 2472-2480.
  • [114] Inzitari R., Cabras T., Rossetti D. V., Fanali C., Vitali A., Pellegrini M., et al., Detection in human saliva of different statherin and P-B fragments and derivatives, Proteomics, 2006; 6, 6370-6379.[Crossref]
  • [115] Castagnola M., Cabras T., Iavarone F., Vincenzoni F., Vitali A., Pisano E., et al., Top-down platform for deciphering the human salivary proteome, Matern. Fetal Neonatal. Med., 2012; 25, 27-43.[Crossref]
  • [116] Helmerhorst E. J., Sun X., Salih E., Oppenheim F. G., Identification of Lys-Pro-Gln as a novel cleavage site specificity of saliva-associated proteases, J. Biol. Chem., 2008; 283, 19957-19966.
  • [117] Zamakhchari M., Wei G., Dewhirst F., Lee J., Schuppan D., Oppenheim F. G., et al., Identification of Rothia bacteria as gluten-degrading natural colonizers of the upper gastro-intestinal tract, PLoS One, 2011; 6, e24455. doi:10.1371/journal.pone.0024455[Crossref]
  • [118] Kavanagh K., Dowd S., Histatins: antimicrobial peptides with therapeutic potential, J. Pharm. Pharmacol., 2004; 56, 285-289.[Crossref]
  • [119] Oudhoff M. J., Bolscher J. G., Nazmi K., Kalay H., van ‘t Hof W., Amerongen A. V., et al., Histatins are the major wound-closure stimulating factors in human saliva as identified in a cell culture assay, FASEB J., 2008; 22; 3805-3812.[Crossref]
  • [120] Oudhoff M. J., Kroeze K. L., Nazmi K., van den Keijbus P. A., van ‘t Hof W., Fernandez-Borja M., et al., Structure-activity analysis of histatin, a potent wound healing peptide from human saliva: cyclization of histatin potentiates molar activity 1,000-fold, FASEB J., 2008; 22, 3805-3812.
  • [121] Oudhoff M. J., van den Keijbus P. A., Kroeze K. L., Nazmi K., Gibbs S., Bolscher J. G., et al., Histatins enhance wound closure with oral and non-oral cells, J. Dent. Res., 2009; 88, 846-850.[Crossref]
  • [122] Bennick A., Interaction of plant polyphenols with salivary proteins, Crit. Rev. Oral Biol. Med., 2002; 13, 184-196.[Crossref]
  • [123] Cabras T., Pisano E., Boi R., Olianas A., Manconi B., Inzitari R., et al., Age-dependent modifications of the human salivary secretory protein complex, J. Proteome Res., 2009; 8, 4126-4134.[Crossref]
  • [124] Cabras T., Melis M., Castagnola M., Padiglia A., Tepper B. J., Messana I., et al., Responsiveness to 6-n-propylthiouracil (PROP) is associated with salivary levels of two specific basic proline-rich proteins in humans, PLoS One, 2012; 7, e30962. doi:10.1371/journal.pone.0030962
  • [125] Melis M., Aragoni M. C., Arca M., Cabras T., Caltagirone C., Castagnola M., et al., Marked increase in PROP taste responsiveness following oral supplementation with selected salivary proteins or their related free amino acids. PLoS One, 2013; 8, e59810. doi:10.1371/journal.pone.0059810[Crossref]
  • [126] Robinovitch M. R., Ashley R. L., Iversen J. M., Vigoren E. M., Oppenheim F. G., Lamkin M., Parotid salivary basic proline-rich proteins inhibit HIV-I infectivity, Oral Dis., 2001; 7, 86-93.
  • [127] Cabras T., Pisano E., Mastinu A., Denotti G., Pusceddu P. P., Inzitari R., et al., Alterations of the salivary secretory peptidome profile in children affected by type 1 diabetes, Mol. Cell. Proteomics, 2010; 9, 1099-1108.
  • [128] Castagnola M., Messana I., Inzitari R., Fanali C., Cabras T., Morelli A., et al., Hypo-phosphorylation of salivary peptidome as a clue to the molecular pathogenesis of autism spectrum disorders, J. Proteome Res., 2008; 7, 5327-5332.[Crossref]
  • [129] Castagnola M., Cabras T., Vitali A., Sanna M. T., Messana I., Biotechnological implications of the salivary proteome, Trends Biotechnol., 2011; 29, 409-418.[Crossref]
  • [130] Pisano E., Cabras T., Montaldo C., Piras V., Inzitari R., Olmi C., et al., Peptides of human gingival crevicular fluid determined by HPLC-ESI-MS, Eur. J. Oral Sci., 2005; 113, 462-468.[Crossref]
  • [131] Inzitari R., Cabras T., Pisano E., Fanali C., Manconi B., Scarano E., et al., HPLC-ESI-MS analysis of oral human fluids reveals that gingival crevicular fluid is the main source of oral thymosins beta(4) and beta(10), J. Sep Sci., 2009; 32, 57-63.[Crossref]
  • [132] Nguyen-Khuong T., Fitzgerald A., Zhao Z., Willcox M., Walsh B. J., Improvements for the visualization of low-molecular weight protein and peptides of human tears using MALDI, Proteomics, 2008; 8, 3424–3432.[Crossref]
  • [133] Lo L.–H., Wu P.–C., Wu Y.– C., Shiea J., Characterization of human neutrophil peptides (α-defensins) in the tears of dry eye patients, Anal. Methods, 2010; 2, 1934-1940.[Crossref]
  • [134] Hayakawaa E., Landuyt B., Baggerman G., Cuyvers R., Lavigne R., Luytene W., et al., Peptidomic analysis of human reflex tear fluid, Peptides, 2013; 42, 63-69. [Crossref]
  • [135] Dickinson D. P., Thiesse M., A major human lacrimal gland mRNA encodes a new proline-rich protein family member, Invest, Ophthalmol. Vis. Sci., 1995; 36, 2020–2031.
  • [136] de Souza G. A., Godoy L. M. F., Mann M., Identification of 491 proteins in the tear fluid proteome reveals a large number of proteases and protease inhibitors, Genome Biol., 2006; 7, R72. http://genomebiology.com/2006/7/8/R72[Crossref]
  • [137] Phalipon A., Corthesy B., Novel functions of the polymeric Ig receptor: well beyond transport of immunoglobulins, Trends Immunol., 2003; 24, 55–58.[Crossref]
  • [138] Phalipon A., Cardona A., Kraehenbuhl J. P., Edelman L., Sansonetti P. J., Corthesy B., Secretory component: a new role in secretory IgA-mediated immune exclusion in vivo, Immunity, 2002; 17, 107–115.[Crossref]
  • [139] Saxon A., Ke Z., Bahati L., Stevens R. H., Soluble CD23 containing B cell supernatants induce IgE from peripheral blood B-lymphocytes and costimulate with interleukin-4 in induction of IgE, J. Allergy Clin. Immunol., 1990; 86, 333–344. [Crossref]
  • [140] Gelstein S., Yeshurun Y., Rozenkrantz L., Shushan S., Frumin I., Roth Y., et al., Human tears contain a chemosignal, Science, 2011; 331, 226–230.
  • [141] Duncan M. W., Thompson H. S., Proteomics of semen and its constituents, Proteomics Clin. Appl., 2007; 1, 861-875.[Crossref]
  • [142] Rodríguez-Martínez H., Kvist U., Ernerudh J., Sanz L., Calvete J .J., Seminal plasma proteins: what role do they play?, Am. J. Reprod. Immunol., 2011; 66, 11-22.[Crossref]
  • [143] Owen D. H., Katz D. F., A review of the physical and chemical properties of human semen and the formulation of a semen stimulant, J. Androl., 2005; 26, 459-469.[Crossref]
  • [144] Evans J. P., Kopf G. S., Molecular mechanisms of sperm-egg interaction and egg activation, Andrologia, 1998; 30, 297-307.
  • [145] Jansen S., Ekhlasi-Hundrieser M., Töpfer-Petersen E., Sperm adhesion molecules: structure and function, Cells Tissues Organs, 2001; 168, 82-92.
  • [146] Primakoff P., Myles D. G., Penetration, adhesion, and fusion in mammalian sper-egg interaction, Science, 2002; 296, 2183-2185.
  • [147] Yi Y. J., Mananhdar G., Oko R. J., Bredd W. G., Sutovsky P., Mechanism of sper-zona pellucid penetration during mammalian fertilization: 26S proteasome as a candidate egg coat lysine, Soc. Reprod. Fertil. Suppl., 2007; 63, 385-408.
  • [148] de Lamirande E., Semenogelin, the main protein of the human semen coagulum, regulates sperm function, Semin. Thromb. Hemost., 2007; 33, 60-68.[Crossref]
  • [149] Lilja H., Oldbring J., Rannevik G., Laurell C. B., Seminal vesicle-secreted proteins and their reactions during gelation and liquefaction of human semen, J. Clini. Invest., 1987; 80, 281-285.[Crossref]
  • [150] Peter A., Lilja H., Lundwall A., Malm J., Semenogelin I and semenogelin II, the major gel-forming proteins in human semen, are substrates for transglutaminase, Eur. J. Biochem., 1998; 252, 216-221. [Crossref]
  • [151] Mann T., Lutwak-Mann C., Male Reproductiove Function and Semen. Themes and trends in Physiology, Biochemestry and Investugative andrology, Springer-Verlag, Berlin, Heidelberg, New York, 1981.
  • [152] Tauber P. F., Zaneveld L. J. D., Propping D., Schumacher G. F. B., Components of human split ejaculates II. Enzymes and proteinase inhibitors, J. Reprod. Fertil., 1976; 46, 165-171.[Crossref]
  • [153] Brillard-Bourdet M., Rehault S., Juliano L., Ferrer M., Moreau T., Gauthier F., Amydolytic activity of prostatic acid phosphatise on human semenogelin and semenogelin-derived synthetic substrates. Eur. J. Biochem., 2002; 269, 390-395.
  • [154] Christensson A., Laurell C. B., Lilja H., Enzymatic activity of postate-specific antigen and its reactions with extracellular serine proteinase inhibitor, Eur. J. Biochem., 1990; 194, 755-763. [Crossref]
  • [155] Fung K. Y. C., Glode L. M., Green S., Duncam M. W., A comprehensive Characterization of the Peptide and Protein Constituents Of Human Seminal Fluid, Prostate, 2004; 61, 171-181.[Crossref]
  • [156] Zhao H., Lee W., Shen J., Li H., Zhang Y., Identification of novel semenogelin I-derived antimicrobial peptide from liquefied human seminal plasma, Peptides, 2008; 29, 505-511. [Crossref]
  • [157] Bourgeon F., Evrard B., Brillard-Bourdet M., Colleu D, Jégou B., Pineau C., Antibacterial activity of human seminal plasma, Biol. Reprod., 2004; 70, 768-774.
  • [158] Edström A. M., Malm J., Frohm B., Martellini J. A., Giwercman A., Mörgelin M., et al., The Major Bactericidal Activity of Human Seminal Plasma Is Zinc-Dependent and Derived from Fragmentation of the Semenogelins, J. Immunol., 2008; 181, 3413-3421. [Crossref]
  • [159] Seidah N. G., Ramasharma K., Sairam M. R., Chrétien M., Partial amino acid sequencing of human seminal plasma peptide with inhibin-like activity, FEBS Lett., 1984; 167, 98-102.
  • [160] Ramasharma K., Sairam M. R., Seidah N. G., Chrétien M., Manjunath P., Sciller P. E., et al., Isolation, structure, and synthesis of a human seminal plasma peptide with inhibin-like activity, Science, 1984; 223, 1199-1202.
  • [161] Münch J., Rücker E., Ständker L., Adermann K., Goffinet C., Schindler M., et al., Semen-derived amyloid fibrils drastically enhance HIV infection, Cell, 2007; 131, 1059-1071. [Crossref]
  • [162] Doncel G. F., Joseph T., Thurman A. R., Role of semen in HIV-1 transmission: inhibitor or facilitator?, Am. J. Reprod. Immunol., 2011; 65, 292-301.[Crossref]
  • [163] Martellini J. A., Cole A. L., Svoboda P., Stuchlik O., Chen L. M., Chai K. X., et al., HIV-1 Enhancing effect of Prostatic Acid Phosphatase Peptides Is Reduced in Human seminal Plasma. PloS One, 2011; 6, e16285. doi:10.1371/journal.pone.0016285[Crossref]
  • [164] Roan N. R., Müller J. A., Liu H., Chu S., Arnold F., Stürzel C., et al., Peptides Released by Physiological Cleavage of Semen Coagulum Proteins Form Amyloids that Enhance HIV Infection, Cell. Host. Microbe., 2011; 10, 541-550.[Crossref]
  • [165] Arnold F., Schnell J., Zirafi O., Stürzel C., Meier C., Weil T., et al., Naturally Occurring Fragments from Two Distinct Regions of the Prostatic Acid Phosphatase Form Amyloidogenic Enhancers of HIV Infection, J. Virol., 2012; 86, 1244-1249.[Crossref]
  • [166] Bishop P. N., Structural macromolecules and supramolecular organisation of the vitreous gel, Prog. Retin.Eye Res., 2000; 19, 323–344.[Crossref]
  • [167] Sebag J., The vitreous, in: W.Hart (Ed.), Physiology of the Eye, Adlers, Mosby St. Louis, 1992, 7.
  • [168] Ulrich J. N., Spannagl M., Kampik A., Gandorfer A., Components of the fibrinolytic system in the vitreous body in patients with vitreoretinal disorders, Clin. Experiment Ophthalmol., 2008; 36, 431–436.
  • [169] Wu C. W., Sauter J. L., Johnson P. K., Chen C. D., Olsen T.W., Identification and localization of major soluble vitreous proteins in human ocular tissue, Am. J. Ophthalmol., 2004; 137, 655-661.
  • [170] Shitama T., Hayashi H., Noge S., Uchio E., Oshima K., Haniu H., et al., Proteome profiling of vitreoretinal diseases by cluster analysis, Proteomics Clin. Appl., 2008; 2, 1265-1280.[Crossref]
  • [171] de Boer J. H., van Haren M. A., de Vries-Knoppert W. A., Baarsma G. S., de Jong P. V., Postema F. J., et al., Analysis of IL-6 levels in human vitreous fluid obtained from uveitis patients, patients with proliferative intraocular disorders and eye bank eyes, Curr. Eye Res., 1992; 11, 181–186. [Crossref]
  • [172] Funatsu H., Yamashita H., Ikeda T., Mimura T., Eguchi S., Hori S., Vitreous levels of interleukin-6 and vascular endothelial growth factor are related to diabetic macular edema, Ophthalmology, 2003; 110, 1690–1696. [Crossref]
  • [173] Hattenbach L. O., Allers A., Gumbel H. O., Scharrer I., Koch F. H., Vitreous concentrations of TPA and plasminogen activator inhibitor are associated with VEGF in proliferative diabetic vitreoretinopathy, Retina, 1999; 19, 383–389.[Crossref]
  • [174] Funatsu H., Yamashita H., Nakamura S., Mimura T., Eguchi S., Noma H., et al., Vitreous levels of pigment epithelium-derived factor and vascular endothelial growth factor are related to diabetic macular edema, Ophthalmology, 2006; 113, 294-301.[Crossref]
  • [175] Kim T., Kim S. J., Kim K., Kang U. B., Lee C., Park K. S., et al., Profiling of vitreous proteomes from proliferative diabetic retinopathy and nondiabetic patients, Proteomics, 2007; 7, 4203–4215.[Crossref]
  • [176] Shitama T., Hayashi H., Noge S., Uchio E., Oshima K., Haniu H., et al., Proteome Profiling of Vitreoretinal Diseases by Cluster Analysis, Proteomics Clin. Appl., 2008; 2, 1265-1280.[Crossref]
  • [177] Ouchi M., West K., Crabb J. W., Kinoshita S., Kamei M., Proteomic analysis of vitreous from diabetic macular edema, Exp. Eye Res., 2005; 81, 176-182.[Crossref]
  • [178] García-Ramírez M., Canals F., Hernández C., Colomé N., Ferrer C., Carrasco E., et al., Proteomic analysis of human vitreous fluid by fluorescence-based difference gel electrophoresis (DIGE): a new strategy for identifying potential candidates in the pathogenesis of proliferative diabetic retinopathy, Diabetologia, 2007; 50, 1294–1303.[Crossref]
  • [179] Wang H., Feng L., Hu J. W., Xie C. L., Wang F., Characterisation of the vitreous proteome in proliferative diabetic retinopathy, Proteome Sci., 2012; 10, 15. http://www.proteomesci.com/content/10/1/15[Crossref]
  • [180] Rollin R., Mediero A., Martínez-Montero J. C., Roldán-Pallarés M., Suárez-Leoz M., Vidal-Fernández P., et al., Atrial natriuretic peptide in the vitreous humor and epiretinal membranes of patients with proliferative diabetic retinopathy, Mol. Vis., 2004; 10, 450-457.
  • [181] Levin E. R., Gardner D. G., Samson W. K., Natriuretic peptides, N. Engl. J. Med., 1998; 339, 321-328.
  • [182] Doyle C. J., Yancey K., Pitt H. A., Wang M., Bemis K., Yip-Schneider M. T., et al., The proteome of normal pancreatic juice, Pancreas, 2012; 41, 186-194.[Crossref]
  • [183] Tian M., Cui Y. Z., Song G. H., Zong M. J. Zhou X. Y., Chen Y, et al., Proteomic analysis identifies MMP-9,DJ-I and AIBG as overexpressed proteins in pancreatic juice from pancreatic ductal adenocarcinoma patients, BMC Cancer, 2008; 8, 241. http://www.biomedcentral.com/1471-2407/8/241.
  • [184] Lv S., Gao J., Zhu F., Li Z., Gong Y., Xu G., et al., Transthyretin, identified by proteomics, is overabundant in pancreatic juice from pancreatic carcinoma and originates from pancreatic islets, Diagn. Cytopathol., 2011; 39, 875-881. [Crossref]
  • [185] Zhou L., Lu Z., Yang A., Deng R., Mai C., Sang X., et al., Comparative proteomic analysis of humanpancreatic juice: methodological study, Proteomics, 2007; 7, 1345-1355.[Crossref]
  • [186] Gao J., Zhu F., Lv S., Li Z., Ling Z., Gong Y., et al., Identification of pancreatic juice proteins as biomarkers of pancreatic cancer, Oncol. Rep., 2010; 23; 1683-1692.
  • [187] Grønborg M., Bunkenborg J., Kristiansen T. Z., Jensen O. N., Yeo C. J., Hruban R. H., et al., Comprehensive proteomic analysis of human pancreatic juice, J. Proteome Res., 2004; 3, 1042-1055.[Crossref]
  • [188] Chen R., Pan S., Cooke K., Moyes K. W., Bronner M. P., Goodlett D. R., et al., Comparison of pancreas juice proteins from cancer versus pancreatitis using quantitative proteomic analysis, Pancreas, 2007; 34, 70–79. [Crossref]
  • [189] Chen R., Pan S., Yi E. C., Donohoe S., Bronner M. P., Potter J. D., et al., Quantitative proteomic profiling of pancreatic cancer juice, Proteomics, 2006; 6, 3871–3879. [Crossref]
  • [190] Chen R., Pan S., Duan X., Nelson B. H., Sahota R. A., de Rham S., et al., Elevated level of anterior gradient-2 in pancreatic juice from patients with pre-malignant pancreatic neoplasia, Mol. Cancer, 2010; 9, 149. http://www.molecular-cancer.com/content/9/1/149
  • [191] Makawita S., Smith C., Batruch I., Zheng Y., Rückert F., Grützmann R., et al., Integrated proteomic profiling of cell line conditioned media and pancreatic juice for the identification of pancreatic cancer biomarkers, Mol. Cell. Proteomics, 2011; 10, M111.008599.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.