Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 1 | 1 |

Article title

Neuropeptidomics applied to studies of mammalian reproduction


Title variants

Languages of publication



Neuropeptidomics, a mass spectrometry-based technique which aims to uncover the complete suite of neuropeptides present in a tissue, organ or cell from the brain or nervous system, has found application in studies examining physiological responses (e.g. food intake, appetite and reproduction). Neuropeptides (and peptide hormones) have long been known as regulators of mammalian physiological processes, particularly reproduction. These peptides are derived from precursor proteins and become active via proteolytic processes and post-translational modifications. A relatively large number of neuropeptides, mainly formed in the hypothalamus or the anterior pituitary of mammals, have been specifically associated with reproduction, including GnRH, NPY, PYY and kisspeptin. Here, we will present an overview of neuropeptides, their roles in reproduction and the application of neuropeptidomics in this field. We address the advantages of neuropeptidomics in reproductive studies including the high throughput identification, profiling and quantification of neuropeptides present in reproductive tissues and also discuss some of the challenges. The application of neuropeptidomics to the field of reproduction will provide the foundation for a greater understanding of how neuropeptides act to regulate reproductive function.








Physical description


1 - 1 - 2014
1 - 7 - 2013
29 - 10 - 2013
7 - 10 - 2013


  • The University of Queensland, Institute for Molecular Bioscience, 306 Carmody Rd, St Lucia, QLD 4072, Australia
  • CSIRO Animal, Food and Health Sciences, 306 Carmody Rd, St Lucia, QLD 4067, Australia
  • CSIRO Animal, Food and Health Sciences, 306 Carmody Rd, St Lucia, QLD 4067, Australia


  • [1] Boonen K., Landuyt B., Baggerman G., Husson S.J., Huybrechts J., Schoofs L., Peptidomics: the integrated approach of MS, hyphenated techniques and bioinformatics for neuropeptide analysis, J Sep Sci, 2008, 31, 427-445.[Crossref]
  • [2] De Wied D., Long term effect of vasopressin on the maintenance of a conditioned avoidance response in rats, Nature, 1971, 232, 58-60.
  • [3] Svensson M., Skold K., Nilsson A., Falth M., Nydahl K., Svenningsson P., Andren P.E., Neuropeptidomics: MS applied to the discovery of novel peptides from the brain, Anal Chem, 2007, 79, 15-16, 18-21.
  • [4] Horodyski F.M., Bhatt S.R., Lee K.Y., Alternative splicing of transcripts expressed by the Manduca sexta allatotropin (Mas-AT) gene is regulated in a tissue-specific manner, Peptides, 2001, 22, 263-269.[Crossref]
  • [5] Lee K.Y., Chamberlin M.E., Horodyski F.M., Biological activity of Manduca sexta allatotropin-like peptides, predicted products of tissue-specific and developmentally regulated alternatively spliced mRNAs, Peptides, 2002, 23, 1933-1941.[Crossref]
  • [6] Mentlein R., Dahms P., Grandt D., Kruger R., Proteolytic processing of neuropeptide Y and peptide YY by dipeptidyl peptidase IV, Regul Pept, 1993, 49, 133-144.[Crossref]
  • [7] Sakurai T., Amemiya A., Ishii M., Matsuzaki I., Chemelli R.M., Tanaka H., Williams S.C., Richarson J.A., Kozlowski G.P., Wilson S., et al., Orexins and orexin receptors: a family of hypothalamic neuropeptides and G protein-coupled receptors that regulate feeding behavior, Cell, 1998, 92, 573-585.[Crossref]
  • [8] Fricker L.D., Lim J., Pan H., Che F.Y., Peptidomics: identification and quantification of endogenous peptides in neuroendocrine tissues, Mass Spectrom Rev, 2006, 25, 327-344.[Crossref]
  • [9] Girard L.R., Fiedler T.J., Harris T.W., Carvalho F., Antoshechkin I., Han M., Sternberg P.W., Stein L.D., Chalfie M., WormBook: the online review of Caenorhabditis elegans biology, Nucleic Acids Res, 2007, 35, D472-475.[Crossref]
  • [10] Salio C., Lossi L., Ferrini F., Merighi A., Neuropeptides as synaptic transmitters, Cell Tissue Res, 2006, 326, 583-598.
  • [11] Strand F.L., Neuropeptides: Regulators of Physiological Processes, Massachusetts Institute of Technology, Cambridge, MA, (1999).
  • [12] Bliss S.P., Navratil A.M., Xie J., Roberson M.S., GnRH signaling, the gonadotrope and endocrine control of fertility, Front Neuroendocrinol, 2010, 31, 322-340.[Crossref]
  • [13] Wade G.N., Jones J.E., Neuroendocrinology of nutritional infertility, Am J Physiol Regul Integr Comp Physiol, 2004, 287, R1277-1296.
  • [14] Small C.J., Bloom S.R., Stanley S.A., Neuropeptide regulation of appetite and reproduction, J Reprod Med Endocrinol, 2004, 1, 13-19.
  • [15] Tsutsui K., Bentley G.E., Kriegsfeld L.J., Osugi T., Seong J.Y., Vaudry H., Discovery and evolutionary history of gonadotrophin-inhibitory hormone and kisspeptin: new key neuropeptides controlling reproduction, J Neuroendocrinol, 2010, 22, 716-727.
  • [16] Tsutsui K., Ubuka T., Bentley G.E., Kriegsfeld L.J., Gonadotropin-inhibitory hormone (GnIH): discovery, progress and prospect, Gen Comp Endocrinol, 2012, 177, 305-314.
  • [17] Evans J.J., Anderson G.M., Balancing ovulation and anovulation: integration of the reproductive and energy balance axes by neuropeptides, Hum Reprod Update, 2012, 18, 313-332.[Crossref]
  • [18] Okamura H., Ohkura S., Neuroendocrine control of reproductive function in ruminants, Anim Sci J, 2007, 78, 105-111.[Crossref]
  • [19] Wojcik-Gladysz A., Polkowska J., Neuropeptide Y--a neuromodulatory link between nutrition and reproduction at the central nervous system level, Reprod Biol, 2006, 6 Suppl 2, 21-28.
  • [20] Grandt D., Schimiczek M., Rascher W., Feth F., Shively J., Lee T.D., Davis M.T., Reeve J.R., Jr., Michel M.C., Neuropeptide Y 3-36 is an endogenous ligand selective for Y2 receptors, Regul Pept, 1996, 67, 33-37.[Crossref]
  • [21] Schober D.A., Gackenheimer S.L., Gehlert D.R., Pharmacological characterization of neuropeptide Y-(2-36) binding to neuropeptide Y Y1 and Y2 receptors, Eur J Pharmacol, 1996, 318, 307-313.
  • [22] Woller M.J., McDonald J.K., Reboussin D.M., Terasawa E., Neuropeptide Y is a neuromodulator of pulsatile luteinizing hormone-releasing hormone release in the gonadectomized rhesus monkey, Endocrinology, 1992, 130, 2333-2342.
  • [23] Lebrethon M.C., Vandersmissen E., Gerard A., Parent A.S., Junien J.L., Bourguignon J.P., In vitro stimulation of the prepubertal rat gonadotropin-releasing hormone pulse generator by leptin and neuropeptide Y through distinct mechanisms, Endocrinology, 2000, 141, 1464-1469.
  • [24] Lee J.H., Miele M.E., Hicks D.J., Phillips K.K., Trent J.M., Weissman B.E., Welch D.R., KiSS-1, a novel human malignant melanoma metastasis-suppressor gene, J Natl Cancer Inst, 1996, 88, 1731-1737.
  • [25] Pinilla L., Aguilar E., Dieguez C., Millar R.P., Tena-Sempere M., Kisspeptins and reproduction: physiological roles and regulatory mechanisms, Physiol Rev, 2012, 92, 1235-1316.[Crossref]
  • [26] Berson S.A., Yalow R.S., Radioimmunoassay of ACTH in plasma, J Clin Invest, 1968, 47, 2725-2751.[Crossref]
  • [27] Stenfors C., Mathe A.A., Theodorsson E., Chromatographic and immunochemical characterization of rat brain neuropeptide Y-like immunoreactivity (NPY-LI) following repeated electroconvulsive stimuli, J Neurosci Res, 1995, 41, 206-212.[Crossref]
  • [28] Xu K., Hong K.A., Zhou Z., Hauger R.L., Goldman D., Sinha R., Genetic modulation of plasma NPY stress response is suppressed in substance abuse: association with clinical outcomes, Psychoneuroendocrinology, 2012, 37, 554-564. [Crossref]
  • [29] Ziotopoulou M., Mantzoros C.S., Hileman S.M., Flier J.S., Differential expression of hypothalamic neuropeptides in the early phase of diet-induced obesity in mice, Am J Physiol Endocrinol Metab, 2000, 279, E838-845.
  • [30] Li J.L., Zheng F.L., Tan H.B., Yin S.Y., Yang J.H., Li Y., Bu Y.F., Orexin A and neuropeptide Y levels in plasma and hypothalamus of rats with chronic renal failure, Zhonghua Yi Xue Za Zhi, 2003, 83, 992-995.
  • [31] Theodorsson A., Theodorsson E., Estradiol increases brain lesions in the cortex and lateral striatum after transient occlusion of the middle cerebral artery in rats: no effect of ischemia on galanin in the stroke area but decreased levels in the hippocampus, Peptides, 2005, 26, 2257-2264.[Crossref]
  • [32] Davis L.G., Manning R.W., Callahan A.M., Wolfson B., Baldino F., Jr., Toy S.T., The application of enzyme-linked immunosorbent assays (ELISA) to neuropeptides, J Neurosci Methods, 1985, 14, 15-23.[Crossref]
  • [33] Ma M., Sieber K.-P., Ballarino J., Wu S.-J., ELISA and monoclonal antibodies. in Immunological techniques in insect biology (Gilbert L.I., Miller T.A., Eds.), Springer-Verlag, New York, (1988).
  • [34] Kos K., Harte A.L., James S., Snead D.R., O’Hare J.P., McTernan P.G., Kumar S., Secretion of neuropeptide Y in human adipose tissue and its role in maintenance of adipose tissue mass, Am J Physiol Endocrinol Metab, 2007, 293, E1335-1340.
  • [35] Li K.W., Geraerts W.P., Amino acid sequencing of neuropeptides. in Neuropeptide protocols (Irvine G.B., Williams C.H., Eds.), Humana Press, Totowa, NJ, (1997).
  • [36] Tatemoto K., Neuropeptide Y: complete amino acid sequence of the brain peptide, Proc Natl Acad Sci U S A, 1982, 79, 5485-5489.[Crossref]
  • [37] Lovejoy D.A., Fischer W.H., Ngamvongchon S., Craig A.G., Nahorniak C.S., Peter R.E., Rivier J.E., Sherwood N.M., Distinct sequence of gonadotropin-releasing hormone (GnRH) in dogfish brain provides insight into GnRH evolution, Proc Natl Acad Sci U S A, 1992, 89, 6373-6377.[Crossref]
  • [38] Predel R., Kellner R., Baggerman G., Steinmetzer T., Schoofs L., Identification of novel periviscerokinins from single neurohaemal release sites in insects MS/MS fragmentation complemented by Edman degradation, Eur J Biochem, 2000, 267, 3869-3873.
  • [39] Heine G., Raida M., Forssmann W.G., Mapping of peptides and protein fragments in human urine using liquid chromatography-mass spectrometry, J Chromatogr A, 1997, 776, 117-124.
  • [40] Lantos T.A., Gorcs T.J., Palkovits M., Immunohistochemical mapping of neuropeptides in the premamillary region of the hypothalamus in rats, Brain Res Brain Res Rev, 1995, 20, 209-249.[Crossref]
  • [41] Baggerman G., Verleyen P., Clynen E., Huybrechts J., De Loof A., Schoofs L., Peptidomics, J Chromatogr B Analyt Technol Biomed Life Sci, 2004, 803, 3-16.
  • [42] Clynen E., Baggerman G., Veelaert D., Cerstiaens A., Van der Horst D., Harthoorn L., Derua R., Waelkens E., De Loof A., Schoofs L., Peptidomics of the pars intercerebraliscorpus cardiacum complex of the migratory locust, Locusta migratoria, Eur J Biochem, 2001, 268, 1929-1939.
  • [43] Schrader M., Schulz-Knappe P., Peptidomics technologies for human body fluids, Trends Biotechnol, 2001, 19, S55-60.[Crossref]
  • [44] Schulz-Knappe P., Zucht H.D., Heine G., Jurgens M., Hess R., Schrader M., Peptidomics: the comprehensive analysis of peptides in complex biological mixtures, Comb Chem High Throughput Screen, 2001, 4, 207-217.
  • [45] Verhaert P., Uttenweiler-Joseph S., de Vries M., Loboda A., Ens W., Standing K.G., Matrix-assisted laser desorption/ ionization quadrupole time-of-flight mass spectrometry: an elegant tool for peptidomics, Proteomics, 2001, 1, 118-131.[Crossref]
  • [46] Colgrave M.L., Xi L., Lehnert S.A., Flatscher-Bader T., Wadensten H., Nilsson A., Andren P.E., Wijffels G., Neuropeptide profiling of the bovine hypothalamus: thermal stabilization is an effective tool in inhibiting post-mortem degradation, Proteomics, 2011, 11, 1264-1276.[Crossref]
  • [47] Clynen E., De Loof A., Schoofs L., The use of peptidomics in endocrine research, Gen Comp Endocrinol, 2003, 132, 1-9.
  • [48] Trauger S.A., Webb W., Siuzdak G., Peptide and protein analysis with mass spectrometry, J Spectrosc, 2002, 16, 15-28.[Crossref]
  • [49] Dircksen H., Neupert S., Predel R., Verleyen P., Huybrechts J., Strauss J., Hauser F., Stafflinger E., Schneider M., Pauwels K., et al., Genomics, transcriptomics, and peptidomics of Daphnia pulex neuropeptides and protein hormones, J Proteome Res, 2011, 10, 4478-4504.[Crossref]
  • [50] Hauser F., Neupert S., Williamson M., Predel R., Tanaka Y., Grimmelikhuijzen C.J., Genomics and peptidomics of neuropeptides and protein hormones present in the parasitic wasp Nasonia vitripennis, J Proteome Res, 2010, 9, 5296-5310.[Crossref]
  • [51] Rubakhin S.S., Garden R.W., Fuller R.R., Sweedler J.V., Measuring the peptides in individual organelles with mass spectrometry, Nat Biotechnol, 2000, 18, 172-175.[Crossref]
  • [52] Jimenez C.R., van Veelen P.A., Li K.W., Wildering W.C., Geraerts W.P., Tjaden U.R., van der Greef J., Neuropeptide expression and processing as revealed by direct matrixassisted laser desorption ionization mass spectrometry of single neurons, J Neurochem, 1994, 62, 404-407.
  • [53] van Veelen P.A., Jiménez C.R., Li K.W., Wildering W.C., Geraerts W.P.M., Tjaden U.R., van der Greef J., Direct peptide profiling of single neurons by matrix-assisted laser desorption-ionization mass spectrometry, Org Mass Spectrom, 1993, 28, 1542-1546.[Crossref]
  • [54] Jimenez C.R., Li K.W., Dreisewerd K., Mansvelder H.D., Brussaard A.B., Reinhold B.B., Van der Schors R.C., Karas M., Hillenkamp F., Burbach J.P., et al., Pattern changes of pituitary peptides in rat after salt-loading as detected by means of direct, semiquantitative mass spectrometric profiling, Proc Natl Acad Sci U S A, 1997, 94, 9481-9486.[Crossref]
  • [55] Chen R., Li L., Mass spectral imaging and profiling of neuropeptides at the organ and cellular
  • [56] Monroe E.B., Annangudi S.P., Hatcher N.G., Gutstein H.B., Rubakhin S.S., Sweedler J.V., SIMS and MALDI MS imaging of the spinal cord, Proteomics, 2008, 8, 3746-3754.[Crossref]
  • [57] DeKeyser S.S., Kutz-Naber K.K., Schmidt J.J., Barrett-Wilt G.A., Li L., Imaging mass spectrometry of neuropeptides in decapod crustacean neuronal tissues, J Proteome Res, 2007, 6, 1782-1791.[Crossref]
  • [58] Patterson S.D., Aebersold R., Mass spectrometric approaches for the identification of gel-separated proteins, Electrophoresis, 1995, 16, 1791-1814.[Crossref]
  • [59] Baggerman G., Cerstiaens A., De Loof A., Schoofs L., Peptidomics of the larval Drosophila melanogaster central nervous system, J Biol Chem, 2002, 277, 40368-40374.
  • [60] Skold K., Svensson M., Kaplan A., Bjorkesten L., Astrom J., Andren P.E., A neuroproteomic approach to targeting neuropeptides in the brain, Proteomics, 2002, 2, 447-454.[Crossref]
  • [61] Dowell J.A., Heyden W.V., Li L., Rat neuropeptidomics by LC-MS/MS and MALDI-FTMS: Enhanced dissection and extraction techniques coupled with 2D RP-RP HPLC, J Proteome Res, 2006, 5, 3368-3375.[Crossref]
  • [62] Romanova E.V., Lee J.E., Kelleher N.L., Sweedler J.V., Gulley J.M., Comparative peptidomics analysis of neural adaptations in rats repeatedly exposed to amphetamine, J Neurochem, 2012, 123, 276-287.
  • [63] Anderson N.L., Anderson N.G., The human plasma proteome: history, character, and diagnostic prospects, Mol Cell Proteomics, 2002, 1, 845-867.[Crossref]
  • [64] Richens J.L., Lunt E.A., Sanger D., McKenzie G., O’Shea P., Avoiding nonspecific interactions in studies of the plasma proteome: practical solutions to prevention of nonspecific interactions for label-free detection of low-abundance plasma proteins, J Proteome Res, 2009, 8, 5103-5110.[Crossref]
  • [65] Tirumalai R.S., Chan K.C., Prieto D.A., Issaq H.J., Conrads T.P., Veenstra T.D., Characterization of the low molecular weight human serum proteome, Mol Cell Proteomics, 2003, 2, 1096-1103.[Crossref]
  • [66] Svensson M., Skold K., Svenningsson P., Andren P.E., Peptidomics-based discovery of novel neuropeptides, J Proteome Res, 2003, 2, 213-219.[Crossref]
  • [67] Holm A., Storbraten E., Mihailova A., Karaszewski B., Lundanes E., Greibrokk T., Combined solid-phase extraction and 2D LC-MS for characterization of the neuropeptides in rat-brain tissue, Anal Bioanal Chem, 2005, 382, 751-759.
  • [68] Herrero M., Ibanez E., Cifuentes A., Capillary electrophoresiselectrospray- mass spectrometry in peptide analysis and peptidomics, Electrophoresis, 2008, 29, 2148-2160.[Crossref]
  • [69] Javerfalk-Hoyes E.M., Bondesson U., Westerlund D., Andren P.E., Simultaneous analysis of endogenous neurotransmitters and neuropeptides in brain tissue using capillary electrophoresis - microelectrospray-tandem mass spectrometry, Electrophoresis, 1999, 20, 1527-1532.[Crossref]
  • [70] Predel R., Peptidergic neurohemal system of an insect: mass spectrometric morphology, J Comp Neurol, 2001, 436, 363-375. 71] Brockmann A., Annangudi S.P., Richmond T.A., Ament S.A., Xie F., Southey B.R., Rodriguez-Zas S.R., Robinson G.E., Sweedler J.V., Quantitative peptidomics reveal brain peptide signatures of behavior, Proc Natl Acad Sci U S A, 2009, 106, 2383-2388.
  • [72] Che F.Y., Fricker L.D., Quantitative peptidomics of mouse pituitary: comparison of different stable isotopic tags, J Mass Spectrom, 2005, 40, 238-249.[Crossref]
  • [73] Zatylny-Gaudin C., Bernay B., Zanuttini B., Leprince J., Vaudry H., Henry J., Characterization of a novel LFRFamide neuropeptide in the cephalopod Sepia officinalis, Peptides, 2010, 31, 207-214.[Crossref]
  • [74] Kawada T., Ogasawara M., Sekiguchi T., Aoyama M., Hotta K., Oka K., Satake H., Peptidomic analysis of the central nervous system of the protochordate, Ciona intestinalis: homologs and prototypes of vertebrate peptides and novel peptides, Endocrinology, 2011, 152, 2416-2427.
  • [75] Li B., Predel R., Neupert S., Hauser F., Tanaka Y., Cazzamali G., Williamson M., Arakane Y., Verleyen P., Schoofs L., et al., Genomics, transcriptomics, and peptidomics of neuropeptides and protein hormones in the red flour beetle Tribolium castaneum, Genome Res, 2008, 18, 113-122.
  • [76] Gruber C.W., Muttenthaler M., Discovery of defense- and neuropeptides in social ants by genome-mining, PLoS One, 2012, 7(3), e32559.[Crossref]
  • [77] Hou X., Xie F., Sweedler J.V., Relative quantitation of neuropeptides over a thousand-fold concentration range, J Am Soc Mass Spectrom, 2012, 23, 2083-2093.[Crossref]
  • [78] Che F.Y., Fricker L.D., Quantitation of neuropeptides in Cpe(fat)/Cpe(fat) mice using differential isotopic tags and mass spectrometry, Anal Chem, 2002, 74, 3190-3198.[Crossref]
  • [79] Che F.Y., Lim J., Pan H., Biswas R., Fricker L.D., Quantitative neuropeptidomics of microwave-irradiated mouse brain and pituitary, Mol Cell Proteomics, 2005, 4, 1391-1405.[Crossref]
  • [80] Kitteringham N.R., Jenkins R.E., Lane C.S., Elliott V.L., Park B.K., Multiple reaction monitoring for quantitative biomarker analysis in proteomics and metabolomics, J Chromatogr B Analyt Technol Biomed Life Sci, 2009, 877, 1229-1239.
  • [81] Cox D.M., Zhong F., Du M., Duchoslav E., Sakuma T., McDermott J.C., Multiple reaction monitoring as a method for identifying protein posttranslational modifications, J Biomol Tech, 2005, 16, 83-90.
  • [82] Lange V., Picotti P., Domon B., Aebersold R., Selected reaction monitoring for quantitative proteomics: a tutorial, Mol Syst Biol, 2008, 4, 222.
  • [83] Anderson L., Hunter C.L., Quantitative mass spectrometric multiple reaction monitoring assays for major plasma proteins, Mol Cell Proteomics, 2006, 5, 573-588.
  • [84] Huang C., Yang J., Du Y., Miao L., Measurement of free concentrations of highly protein-bound warfarin in plasma by ultra performance liquid chromatography-tandem mass spectrometry and its correlation with the international normalized ratio, Clin Chim Acta, 2008, 393, 85-89.
  • [85] Pan R.N., Lin C.C., Huang P.W., Hsiong C.H., Pao L.H., Simultaneous determination of triazolam and its metabolites in human plasma by liquid chromatography-tandem mass spectrometry, J Chromatogr B Analyt Technol Biomed Life Sci, 2008, 872, 58-62.
  • [86] Wen A., Hang T., Chen S., Wang Z., Ding L., Tian Y., Zhang M., Xu X., Simultaneous determination of amoxicillin and ambroxol in human plasma by LC-MS/MS: validation and application to pharmacokinetic study, J Pharm Biomed Anal, 2008, 48, 829-834.[Crossref]
  • [87] Feng J., Wang L., Dai I., Harmon T., Bernert J.T., Simultaneous determination of multiple drugs of abuse and relevant metabolites in urine by LC-MS-MS, J Anal Toxicol, 2007, 31, 359-368.[Crossref]
  • [88] Lurie I.S., Toske S.G., Applicability of ultra-performance liquid chromatography-tandem mass spectrometry for heroin profiling, J Chromatogr A, 2008, 1188, 322-326.
  • [89] Xi L., Jin Y., Parker E.A., Josh P., Jones A., Wijffels G., Colgrave M.L., Challenges in mass spectrometry-based quantification of bioactive peptides: a case study exploring the neuropeptide Y family, Biopolymers, 2012, 98, 357-366.[Crossref]
  • [90] Ling X.B., Sigdel T.K., Lau K., Ying L., Lau I., Schilling J., Sarwal M.M., Integrative urinary peptidomics in renal transplantation identifies biomarkers for acute rejection, J Am Soc Nephrol, 2010, 21, 646-653.[Crossref]
  • [91] Lenco J., Lan R., Edwards N., Goldman R., MS/MS library facilitated MRM quantification of native peptides prepared by denaturing ultrafiltration, Proteome Sci, 2012, 10, 7.[Crossref]
  • [92] Perkins D.N., Pappin D.J., Creasy D.M., Cottrell J.S., Probability-based protein identification by searching sequence databases using mass spectrometry data, Electrophoresis, 1999, 20, 3551-3567.[Crossref]
  • [93] Eng J.K., McCormack A.L., Yates Iii J.R., An approach to correlate tandem mass spectral data of peptides with amino acid sequences in a protein database, J Am Soc Mass Spectrom, 1994, 5, 976-989.[Crossref]
  • [94] Craig R., Beavis R.C., TANDEM: matching proteins with tandem mass spectra, Bioinformatics, 2004, 20, 1466-1467.[Crossref]
  • [95] Ma B., Zhang K., Hendrie C., Liang C., Li M., Doherty-Kirby A., Lajoie G., PEAKS: powerful software for peptide de novo sequencing by tandem mass spectrometry, Rapid Commun Mass Spectrom, 2003, 17, 2337-2342.
  • [96] Colinge J., Masselot A., Cusin I., Mahe E., Niknejad A., Argoud-Puy G., Reffas S., Bederr N., Gleizes A., Rey P.A., et al., High-performance peptide identification by tandem mass spectrometry allows reliable automatic data processing in proteomics, Proteomics, 2004, 4, 1977-1984.[Crossref]
  • [97] Shilov I.V., Seymour S.L., Patel A.A., Loboda A., Tang W.H., Keating S.P., Hunter C.L., Nuwaysir L.M., Schaeffer D.A., The Paragon Algorithm, a next generation search engine that uses sequence temperature values and feature probabilities to identify peptides from tandem mass spectra, Mol Cell Proteomics, 2007, 6, 1638-1655.[Crossref]
  • [98] Falth M., Skold K., Norrman M., Svensson M., Fenyo D., Andren P.E., SwePep, a database designed for endogenous peptides and mass spectrometry, Mol Cell Proteomics, 2006, 5, 998-1005.[Crossref]
  • [99] Amare A., Hummon A.B., Southey B.R., Zimmerman T.A., Rodriguez-Zas S.L., Sweedler J.V., Bridging neuropeptidomics and genomics with bioinformatics: Prediction of mammalian neuropeptide prohormone processing, J Proteome Res, 2006, 5, 1162-1167.[Crossref]
  • [100] Southey B.R., Amare A., Zimmerman T.A., Rodriguez-Zas S.L., Sweedler J.V., NeuroPred: a tool to predict cleavage sites in neuropeptide precursors and provide the masses of the resulting peptides, Nucleic Acids Res, 2006, 34, W267-272.[Crossref]
  • [101] Richter R., Schulz-Knappe P., Schrader M., Standker L., Jurgens M., Tammen H., Forssmann W.G., Composition of the peptide fraction in human blood plasma: database of circulating human peptides, J Chromatogr B Biomed Sci Appl, 1999, 726, 25-35.
  • [102] Altelaar A.F., Mohammed S., Brans M.A., Adan R.A., Heck A.J., Improved identification of endogenous peptides from murine nervous tissue by multiplexed peptide extraction methods and multiplexed mass spectrometric analysis, J Proteome Res, 2009, 8, 870-876.[Crossref]
  • [103] Theodorsson E., Stenfors C., Mathe A.A., Microwave irradiation increases recovery of neuropeptides from brain tissues, Peptides, 1990, 11, 1191-1197.[Crossref]
  • [104] Svensson M., Boren M., Skold K., Falth M., Sjogren B., Andersson M., Svenningsson P., Andren P.E., Heat stabilization of the tissue proteome: a new technology for improved proteomics, J Proteome Res, 2009, 8, 974-981.[Crossref]
  • [105] Robinson A.A., Westbrook J.A., English J.A., Boren M., Dunn M.J., Assessing the use of thermal treatment to preserve the intact proteomes of post-mortem heart and brain tissue, Proteomics, 2009, 9, 4433-4444.[Crossref]
  • [106] Scholz B., Skold K., Kultima K., Fernandez C., Waldemarson S., Savitski M.M., Soderquist M., Boren M., Stella R., Andren P., et al., Impact of temperature dependent sampling procedures in proteomics and peptidomics - a characterization of the liver and pancreas post mortem degradome, Mol Cell Proteomics, 2011, 10, M900229- MCP200.
  • [107] Clynen E., Husson S.J., Schoofs L., Identification of new members of the (short) neuropeptide F family in locusts and Caenorhabditis elegans, Ann N Y Acad Sci, 2009, 1163, 60-74. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.