Journal
Article title
Authors
Title variants
Languages of publication
Abstracts
A femtosecond laser at 800 nm was used to create micro-fluidic circuits on lithium niobate (LiNbO3) substrates by means of laser ablation, using different scanning velocities (100-500 μm/s) and laser pulse energies (1-20 μJ). The T-junction geometry was exploited to create on y-cut LiNbO3 crystals a droplet generator, whose microfluidic performance was characterized in a wide range of droplet generation frequencies, from few Hz to about 1 kHz.
Year
Volume
Issue
Physical description
Dates
published
1 - 1 - 2014
online
19 - 11 - 2014
accepted
24 - 9 - 2014
received
25 - 7 - 2014
Contributors
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
author
- Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy and Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany, annamaria.zaltron@unipd.it
author
- Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
author
- Nonlinear Photonics Group, Institute of Applied Physics, University of Münster Corrensstrasse 2/4, 48149 Münster, Germany
author
- Physics and Astronomy Department, University of Padua, Via Marzolo 8, 35131 Padua, Italy
References
- [1] C. Denz, K.-O.Müller, T. Heimann, and T. Tschudi, “Volume holographic storage demonstrator based on phase-codedmultiplexing”, IEEE Journal of Selected Topics in Quantum Electronics 4, 1998, 832[Crossref]
- [2] S. Breer and K. Buse, “Wavelength demultiplexing with volume phase holograms in photorefractive lithium niobate”, Applied Physics B 66, 1998, 339
- [3] Y. L. Lee, N. E. Yu, C. Jung, B.-A. Yu, I.-B. Sohn, S.-C. Choi, Y.-C. Noh, D.-K. Ko, W.-S. Yang, H.-M. Lee, W.-K. Kim and H.-Y. Lee, “Second-harmonic generation in periodically poled lithiumniobate waveguides fabricated by femtosecond laser pulses”, Applied Physics Letters 89, 2006, 171103[Crossref]
- [4] M. Carrascosa, M. Cabrera and F. Agulló-López, “Long-Lifetime Photorefractive Holographic Devices via Thermal Fixing Methods”, Infrared Holography for Optical Communications 86, 2003, 91
- [5] L. Pang, H. M. Chen, L. M. Freeman and Y. Fainman, “Optofluidic devices and applications in photonics, sensing and imaging”, Lab on Chip 12, 2012, 3543[WoS]
- [6] D. Psaltis, S. R. Quake and C. Yang, “Developing optofluidic technology through the fusion of microfluidics and optics”, Nature 442, 2006, 381[Crossref][PubMed]
- [7] M. L. Y. Sin, J. Gao, J. C. Liao and P. K. Wong, “System Integration - A Major Step toward Lab on a Chip”, Journal of Biological Engineering 5, 2011, 1
- [8] M. F. Schneider, Z. Guttenberg, S. W. Schneider, K. Sritharan, V. M. Myles, U. Pamukci and A. Wixforth, “An Acoustically Driven Microliter FlowChamber on a Chip (μFCC) for Cell-Cell and Cell- Surface Interaction Studies”, A European Journal of Chemical Physics and Physical Chemistry 9, 2008, 641[PubMed][WoS]
- [9] J. Friend and L. Y. Yeo, "Microscale acoustofluidics: Microfluidics driven via acoustics and ultrasonics", Reviews of Modern Physics 83. 2011, 647[WoS]
- [10] H. A. Eggert, F. Y. Kuhnert, and K. Buse, “Trapping of dielectric particles with light-induced space-charge fields”, Applied Physics Letters 90, 2007, 241909[Crossref]
- [11] M. Esseling, A. Zaltron, N. Argiolas, G. Nava, J. Imbrock, I. Cristiani, C. Sada and C. Denz, “Highly reduced iron-doped lithium niobate for optoelectronic tweezers”, Applied Physics B 113, 2013, 191[WoS]
- [12] M. Esseling, A. Zaltron, C. Sada and C. Denz, “Charge sensor and particle trap based on z-cut lithium niobate”, Applied Physics Letters 103, 2013, 061115[Crossref]
- [13] M. Jubera, A. García-Cabañes, J.Olivares, A. Alcazar, and M. Carrascosa, “Particle trapping and structuring on the surface of LiNbO3:Fe optical waveguides using photovoltaic fields”, Optics Letters 39, 2014, 649[Crossref][WoS]
- [14] M. Sridhar, D. K. Maurya, J. R. Friend and L. Y. Yeo, “Focused ion beam milling of microchannels in lithiumniobate”, Biomicrofluidics 6, 2012, 1[WoS]
- [15] M. Chauvet, L. Fares and F. Devaux, “Self-trapped beams for fabrication of optofluidic chips”, Proceedings of SPIE 8434, 2012, 84340Q-1
- [16] H. Song, D. L. Chen and R. F. Ismagilov, “Reactions in Droplets in Microfluidic Channels”, Angewandte Chemie International Edition 45, 2006, 7336[Crossref]
- [17] K. Jensen and A. Lee, “The science and applications of droplets in microfluidic devices”, Lab on Chip 4, 2004, 31N
- [18] V. Chokkalingam, B. Weidenhof, M. Krämer, W. F. Maier, S. Herminghaus and R. Seemann, “Optimized droplet-based microfluidics scheme for sol-gel reactions”, Lab on Chip 10, 2010, 1700[PubMed][WoS]
- [19] C. N. Baroud, M. R. de Saint Vincent, and J. P. Delville, "An optical toolbox for total control of droplet microfluidics," Lab on Chip 7, 2007, 1029[PubMed][WoS]
- [20] J.C Baret, V.Taly, M. Ryckelynck, C. A. Merten, A.D. Griflths, “Droplets and emulsions: very high-throughput screening in biology”, Medicine Science 25, 2009, 627
- [21] E. Piccin, D. Ferraro, P. Sartori, E. Chiarello, M. Pierno and G. Mistura, “Generation of water-in-oil and oil-in-water microdroplets in polyester-toner microfluidic devices”, Sensors and Actuators B 196, 2014, 525[WoS]
- [22] P.Watts and S. J. Haswell, “The application of micro reactors for organic synthesis”, Chemical Society Reviews 34, 2005, 235[PubMed][Crossref]
- [23] V. Noireaux and A. Libchaber , “A vesicle bioreactor as a step toward an artificial cell assembly”, Proceeding of National Academy of Sciences U. S. A. 101, 2004, 17669
- [24] M. S. Long, C. D. Jones, M. R. Helfrich, L. K. Mangeney-Slavin, and C. D. Keating, “Dynamic microcompartmentation in synthetic cells” Proceeding of National Academy of Sciences U. S. A. 102, 2005, 5920
- [25] H. J. Choi and C. D. Montemagno, “Biosynthesis within a bubble architecture”, Nanotechnology 17, 2006, 2198[Crossref]
- [26] A. Gupta and R. Kumar, “Effect of geometry on droplet formation in the squeezing regime in a microfluidic T-junction”, Microfluidics and Nanofluidics 8, 2010, 799[Crossref][WoS]
- [27] P. Garstecki, M. J. Fuerstman, H. A. Stone and G. M. Whitesides,“ Formation of droplets and bubbles in a microfluidic T-junctionscaling and mechanism of break-up”, Lab on Chip 6, 2006, 437
- [28] N. Courjal, B. Guichardaz, G. Ulliac, J.-Y. Rauch, B. Sadani, H.-H. Lu, M.-P. Bernal,“High aspect ratio lithiumniobate ridge waveguides fabricated by optical grade dicing” Journal of Physics D: Applied Physics 44, 2011, 305101
- [29] H. Hu, R. Ricken, W. Sohler and R. B. Wehrspohn, “Lithium niobate ridge waveguides fabricated by wet etching”, IEEE Photonics Techology Letters 19, 2007, 417
- [30] P. Sivarajah, C. A. Werley, B. K. Ofori-Okai, K. A. Nelson, “Chemically assisted femtosecond laser machining for applications in LiNbO3 and LiTaO3”, Applied Physics A, 2013, 112[WoS]
- [31] J-W. Lee, Y.-K. Cho, M.-W. Cho, G.-H. Kim and T.-J. Je, “Optical transmittance recovery of powder blasted micro fluidic channels on fused silica glass using MR polishing”, International Journal of Precision Engeneering and Manufacturing 13, 2012, 1925
- [32] R. Osellame H. J. W. M. Hoekstra, G. Cerullo and M. Pollnau, “Femtosecond laser microstructuring: an enabling tool for optofluidic lab-on-chips”, Laser Photonics Reviews 5, 2011, 442[WoS]
- [33] V. Maselli, J. R. Grenier, S. Ho and P.R. Herman, “Femtosecond laser writtien optofluidic sensor: Bragg grating waveguide evanescent probing of microfluidic channel”, Optic Express 17, 2009, 11719[Crossref]
- [34] R. Seemann, M. Brinkmann, T. Pfohl, and S. Herminghaus, “Droplet based microfluidics”, Report on Progress in Physics 75, 2012, 016601
- [35] C.N. Baroud, F. Gallaire and R. Dangla, “Dynamics of microfluidic droplets” Lab on Chip 10, 2010, 2032[PubMed]
- [36] J.H. Xu, S. W. Li, J. Tan, Y. J. Wang, and G. S. Luo, “Controllable Preparation of Monodisperse O/W and W/O Emulsions in the Same Microfluidic Device, Langmuir 22, 2006, 7943[PubMed][Crossref]
- [37] J.H. Xu, S. W. Li, J. Tan and G. S. Luo, “Correlations of droplet formation in T-junction microfluidic devices: from squeezing to dripping”, Microfluidics Nanofluidics 5, 2008, 711[WoS]
- [38] V. Steijn, C. R. Kleijn and M. T. Kreutzer, “Predictive model for the size of bubbles and droplets created in microfluidic Tjunctions” Lab on Chip 10, 2010, 2513[PubMed][WoS]
- [39] Bureau International des Poids et Mesures, Evaluation of measurement data - Guide to the expression of uncertainty in measurement, (2005)
- [40] G. F. Christopher, N. N. Noharuddin, J. A. Taylor and S. L. Anna, “Experimental observations of the squeezing-to-dripping transition in T-shaped microfluidic junctions”, Physical ReviewE 78, 2008, 036317-1
Document Type
Publication order reference
Identifiers
YADDA identifier
bwmeta1.element.-psjd-doi-10_2478_optof-2014-0003