Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

In-line characterization and identification of micro-droplets on-chip

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present an integrated optofluidic sensor system for in-line characterization of micro-droplets. The device provides information about the droplet generation frequency, the droplet volume, and the content of the droplet. Due to its simplicity this principle can easily be implemented with other microfluidic components on one and the same device. The sensor is based on total internal reflection phenomena. Droplets are pushed through a microfluidic channel which is hit by slightly diverging monochromatic light. At the solid-liquid interface parts of the rays experience total internal reflection while another part is transmitted. The ratio of reflected to transmitted light depends on the refractive index of the solution. Both signals are recorded simultaneously and provide a very stable output signal for the droplet characterization. With the proposed system passing droplets were counted up to 320 droplets per second and droplets with different volumes could be discriminated. In a final experiment droplets with different amounts of dissolved CaCl2 were distinguished based on their reflected and transmitted light pattern. This principle can be applied for the detection of any molecules in microdroplets which significantly influence the refractive index of the buffer solution.

Publisher

Year

Volume

1

Issue

1

Physical description

Dates

published
1 - 1 - 2014
online
25 - 6 - 2013
accepted
26 - 4 - 2013
received
8 - 4 - 2013

Contributors

author
  • Institute for Microsensors, -actuators, and -systems (IMSAS), MCB, University of Bremen Otto-Hahn-Allee, Build. NW1, 28359 Bremen, Germany
  • Institute of Sensor and Actuator Systems (ISAS), Vienna University of Technology Gusshausstrasse 27-29, 1040 Vienna, Austria
  • Institute of Sensor and Actuator Systems (ISAS), Vienna University of Technology Gusshausstrasse 27-29, 1040 Vienna, Austria
  • Institute for Microsensors, -actuators, and -systems (IMSAS), MCB, University of Bremen Otto-Hahn-Allee, Build. NW1, 28359 Bremen, Germany

References

  • [1] G. M. Whitesides, “The origins and the future of microfluidics.” Nature, vol. 442, no. 7101, pp. 368-373, Jul 2006.
  • [2] S. Haeberle, G. Roth, F. von Stetten, R. Zengerle et al., “Microfluidic lab-on-a-chip platforms: requirements, characteristics and applications,” Chemical Society Reviews, vol. 39, no. 3, pp. 1153-1182, 2010.[WoS]
  • [3] A. Huebner, S. Sharma, M. Srisa-Art, F. Hollfelder, J. B. Edel, and A. J. deMello, “Microdroplets: A sea of applications?” Lab on a Chip, vol. 8, pp. 1244-1254, 2008.[WoS]
  • [4] X. C. i. Solvas and A. deMello, “Droplet microfluidics: Recent developments and future applications.” Chemical Communications, vol. 47, pp. 1936-1942, 2011.[WoS][Crossref]
  • [5] S. Hardt and T. Hahn, “Microfluidics with aqueous two-phase systems.” Lab on a Chip, vol. 12, pp. 434-442, 2012.[WoS]
  • [6] S. S. Bithi and S. A. Vanapalli, “Behavior of a train of droplets in a fluidic network with hydrodynamic traps.” Biomicrofluidics, vol. 4, p. 044110, 2010.[WoS][Crossref]
  • [7] M. Abdelgawad and A. R. Wheeler, “The digital revolution: A new paradigm for microfluidics.” Advanced Materials (Weinheim, Germany), vol. 21, pp. 920-925, 2009.[WoS][Crossref]
  • [8] L. Malic, D. Brassard, T. Veres, and M. Tabrizian, “Integration and detection of biochemical assays in digital microfluidic LOC devices.” Lab on a Chip, vol. 10, pp. 418-431, 2010.[WoS]
  • [9] Z. Wang and J. Zhe, “Recent advances in particle and droplet manipulation for lab-on-a-chip devices based on surface acoustic waves.” Lab on a Chip, vol. 7, pp. 1280-1285, 2011.[WoS]
  • [10] M. Zagnoni and J. M. Cooper, “On-chip electrocoalescence of microdroplets as a function of voltage, frequency and droplet size.” Lab on a Chip, vol. 9, pp. 2652-2658, 2009.[WoS]
  • [11] H. Song, M. R. Bringer, J. D. Tice, C. J. Gerdts, and R. F. Ismagilov, “Experimental test of scaling of mixing by chaotic advection in droplets moving through microfluidic channels,” Applied Physics Letters, vol. 83, no. 22, pp. 4664-4666, 2003.
  • [12] H. Song, J. D. Tice, and R. F. Ismagilov, “A microfluidic system for controlling reaction networks in time.” Angewandte Chemie International Edition, vol. 42, pp. 768-772, 2003.[Crossref]
  • [13] H. Song and R. F. Ismagilov, “Millisecond kinetics on a microfluidic chip using nanoliters of reagent.” Journal of the American Chemical Society, vol. 125, pp. 14 613-14 619, 2003.
  • [14] J. F. Edd, D. Di Carlo, K. J. Humphry, S. Köster, D. Irimia, D. A. Weitz, and M. Toner, “Controlled encapsulation of single-cells into monodisperse picolitre drops.” Lab on a Chip, vol. 8, pp. 1262-1264, 2008.[WoS]
  • [15] T. Konry, M. Dominguez-Villar, C. Baecher-Allan, D. A. Hafler, and M. L. Yarmush, “Droplet-based microfluidic platforms for single t cell secretion analysis of IL-10 cytokine.” Biosensors and Bioelectronics, vol. 26, pp. 2707-2710, 2011.[Crossref][WoS]
  • [16] M. Rosenauer, W. Buchegger, I. Finoulst, P. Verhaert, and M. Vellekoop, “Miniaturized flow cytometer with 3d hydrodynamic particle focusing and integrated optical elements applying silicon photodiodes.” Microfluidics and Nanofluidics, vol. 10, no. 4, pp. 761-771, Oct. 2010.[WoS]
  • [17] E. Weber, M. Rosenauer, W. Buchegger, P. D. E. M. Verhaert, and M. J. Vellekoop, “Fluorescence based on-chip cell analysis applying standard viability kits.” in Proc. of the microTAS 2011, Seattle, USA, 2011, pp. 1716-1718.
  • [18] J. Fattaccioli, J. Baudry, J.-D. Émerard, E. Bertrand, C. Goubault, N. Henry, and J. Bibette, “Size and fluorescence measurements of individual droplets by flow cytometry.” Soft Matter, vol. 11, pp. 2232-2238, 2009.[Crossref][WoS]
  • [19] X. Niu, M. Zhang, S. Peng, W. Wen, and P. Sheng, “Real-time detection, control, and sorting of microfluidic droplets.” Biomicrofluidics, vol. 1, p. 044101, 2007.[WoS]
  • [20] M. Srisa-Art, A. J. deMello, and J. B. Edel, “Highthroughput confinement and detection of single DNA molecules in aqueous microdroplets.” Chemical Communications, vol. 43, pp. 6548-6550, 2009.[Crossref][WoS]
  • [21] N.-T. Nguyen, S. Lassemono, and F. A. Chollet, “Optical detection for droplet size control in microfluidic droplet-based analysis systems.” Sensors and Actuators B: Chemical, vol. 117, pp. 431-436, 2006.
  • [22] N.-T. Nguyen, S. Lassemono, F. A. Chollet, and C. Yang, “Interfacial tension measurement with an optofluidic sensor.” IEEE Sensors Journal, vol. 7, no. 5, pp. 692-697, 2007.[WoS][Crossref]
  • [23] Z. Shen, Y. Zou, and X. Chen, “Characterization of microdroplets using optofluidic signals.” Lab Chip, vol. 12, no. 19, pp. 3816-3820, Aug 2012.[WoS][Crossref]
  • [24] E. Weber, F. Keplinger, and M. J. Vellekoop, “Optofluidic, contact-free 1x3 light-switch fabricated on a mono-layer device,” in Proceedings of the 3rd European Conference on Microfluidics, Heidelberg, Germany, 2012.
  • [25] K. Campbell, A. Groisman, U. Levy, L. Pang, S. Mookherjea, D. Psaltis, and Y. Fainman, “A microfluidic 2x2 optical switch.” Applied Physics Letters, vol. 85, no. 25, pp. 6119-6121, 2004.
  • [26] E. Weber and M. J. Vellekoop, “Optofluidic microsensors for the determination of liquid concentrations.” Lab on a Chip, vol. 12, no. 19, pp. 3754-3759, Aug 2012.[WoS]
  • [27] E. Weber, F. Keplinger, and M. Vellekoop, “Detection of dissolved lactose employing an optofluidic microsystem,” Diagnostics, vol. 2, no. 4, pp. 97-106, 2012.
  • [28] E. Weber, D. Puchberger-Enengl, and M. J. Vellekoop, “In-line characterization of micro-droplets based on partial light reflection at the solid-liquid interface.” in Proc. of the ASME 2012 10th ICNMM, Puerto Rico, USA, 2012, p. To be published.
  • [29] J.-C. Baret, “Surfactants in droplet-based microfluidics.” Lab on a Chip, vol. 12, no. 3, pp. 422-433, Feb 2012.
  • [30] P. Vulto, N. Glade, L. Altomare, J. Bablet, L. D. Tin, G. Medoro, I. Chartier, N. Manaresi, M. Tartagni, and R. Guerrieri, “Microfluidic channel fabrication in dry film resist for production and prototyping of hybrid chips.” Lab on a Chip, vol. 5, no. 2, pp. 158-162, Feb 2005.
  • [31] D. Puchberger-Enengl, S. Podszun, H. Heinz, C. Hermann, P. Vulto, and G. A. Urban, “Microfluidic concentration of bacteria by on-chip electrophoresis.” Biomicrofluidics, vol. 5, no. 4, pp. 44 111-4 411 110, Dec 2011.[WoS]
  • [32] D. Lide, CRC Handbook of Chemistry and Physics, 88th ed., P. J. Mohr and B. N. Taylor, Eds. Boca Raton, 2007.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_optof-2013-0002
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.