Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results
2014 | 1 | 1 |

Article title

Modular Platforms for Optofluidic Systems


Title variants

Languages of publication



Optofluidics is increasingly gaining impact in a number of different fields of research, namely biology and medicine, environmental monitoring and green energy. However, the market for optofluidic products is still in the early development phase. In this manuscript, we discuss modular platforms as a potential concept to facilitate the transfer of optofluidic sensing systems to an industrial implementation. We present microfluidic and optical networks as a basis for the interconnection of optofluidic sensor modules. Finally, we show the potential for entire optofluidic networks







Physical description


1 - 1 - 2014
21 - 12 - 2012
21 - 12 - 2012
27 - 2 - 2013


  • This work has been carried out at the Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76128 Karlsruhe, Germany / Now with Festo AG, 73734 Esslingen, Germany
  • This work has been carried out at the Karlsruhe Institute of Technology (KIT), Institute of Microstructure Technology, 76128 Karlsruhe, Germany / Now with Carl Zeiss AG, Corpoate Research & Technology, 07745 Jena, Germany


  • [1] D. Psaltis, S. R. Quake, and C. Yang, "Developing optofluidic technology through the fusion of microfluidics and optics,” Nature, vol. 442, pp. 381-386, 2006.
  • [2] C. Monat, R. Comachuk, and B. J. Eggleton, "Integrated optofluidics: A new river of light,” Nature Photon., vol. 1, pp. 106-114, 2007.[Crossref]
  • [3] Y. Fainman, L. P. Lee, D. Psaltis, C. Yang, Optofluidics: Fundamentals, Devices, and Applications, Mc- Graw Hill, New York, US, 2009.
  • [4] A. R. Hawkins, H. Schmidt, Handbook of Optofluidics, CRC Press, Boca Raton, FL, US, 2010.
  • [5] X. Fan and I. M. White, "Optofluidic microsystems for chemical and biological analysis,” Nature Photon., vol. 5, pp. 591-597, 2011.[Crossref]
  • [6] L. Pang, Y. Fainman, H. M. Chen and L. M. Freeman, "Optofluidic devices and applications in pho- tonics, sensing and imaging,” Lab Chip, vol. 12, pp. 3543-3551, 2012.[Crossref]
  • [7] A. Manz, N. Graber and H. Widmer, "Miniaturized total chemical analysis systems: a novel concept for chemical sensing,” Sens. Acuators B, vol. 1, pp. 244-248, 1990.
  • [8] P. Gravesen, J. Branebjerg, and O. S. Jensen, "Microfluidics-a review,” J. Micromech. Microeng., vol. 3, pp. 143-164, 1993.
  • [9] G. M. Whitesides, "The origins and the future of microfluidics,” Nature, vol. 442, pp368-373, 2006.
  • [10] S. C. Terry, J. H. Hermann and J. B. Angel "A gas chromatographic air analyzer fabricated on a silicon wafer,” IEEE Trans. Electron Devices, vol. 26, pp. 1880-1886, 1979.[Crossref]
  • [11] E. Verpoorte, A. Manz, H. Lüdi, A. E. Bruno, F. Maystre, B. Krattiger, H. M. Widmer, "A silicon flow cell for optical detection in miniaturized total chemical analysis systems,” Sens. Actuators B, vol. 50, pp. 66-70, 1992.
  • [12] R. Zengerle, S. Kluge, M. Richter, and A. Richter, "A bidirectional silicon micropump,” Sens. Actuators A, vol. 50, pp. 81-86, 1995.
  • [13] J. C. McDonald, D. C. Duffy, J. R. Anderson, D. T. Chiu, H. Wu, O. J. A. Schueller, G. M. Whitesides, "Fabrication of microfluidic systems in poly(dimethylsiloxane),” Electrophoresis, vol. 21, pp. 27-40 2000.[Crossref]
  • [14] J. C. McDonald and G. M. Whitesides, "PDMS as a material for fabricating microfluidic devices,” Acc. Chem. Res., vol. 35, pp. 491-499, 2002.[Crossref]
  • [15] H. Becker, C. Gärtner, "Polymer microfabrication technologies for microfluidic systems,” Anal. Bioanal. Chem., vol. 390, pp. 89-111, 2008.
  • [16] E. Berthier, E. W. K. Young, and D. Beebe, "Engineers are from PDMS-land, Biologists are from Polystyrenia,” Lab Chip, vol. 12, pp. 1224-1237, 2012.[Crossref]
  • [17] T. D. Boone, Z. H. Fan, H. H. Hooper, A. J. Ricco, H. Tan, and S. J. Williams, "Plastic Advances Microfluidic Devices,” Anal. Chem., vol. 1, pp. 78A-86A, 2002.[Crossref]
  • [18] G. S. Fiorini and D. T. Chiu, "Disposable microfluidic devices: fabrication, function, and application,” Bio Techniques, vol. 38, pp. 429-446, 2005.
  • [19] Y.-C. Su, J. Shah, and L. Lin, "Implementation and Analysis of Polymeric Microstructures Replication by Micro Injection Molding,” J. Micromech. Microeng., vol. 14, pp. 415-422, 2004.[Crossref]
  • [20] M. Worgull, A. Kolew, M. Heilig, M. Schneider, H. Dinglreiter, B. Rapp, "Hot embossing of high performance polymers,” Microsyst. Technol., vol. 17, pp. 585-592, 2011.[Crossref]
  • [21] C. D. Chin, V. Linder and S. K. Sia, "Commercialization of microfluidic point-of-care diagnostic devices,” Lab Chip, vol. 12, pp. 2118-2134, 2012.[Crossref]
  • [22] A. W. Martinez, S. T. Phillips, and G. M. Whitesides, "Three-dimensional microfluidic devices fabricated in layered paper and tape,” Proc. Natl Acad. Sci. USA, vol. 105, 19606-19611, 2008
  • [23] D. R. Ballerini, X. Li, and W. Shen, "Patterned paper and alternative materials as substrates for lowcost microfluidic diagnostics,” Microfluid. Nanofluid., 2012, DOI: 10.1007/s10404-012-0999-2.[Crossref]
  • [24] C. W. Tsao and D. L. DeVoe, "Bonding of thermoplastic polymer microfluidics,” Microfluid. Nanofluid., vol. 6, pp. 1-16, 2009.[Crossref]
  • [25] W. Pfleging and O. Baldus, "Laser patterning and welding of transparent polymers for microfluidic device fabrication,” Proc. SPIE, vol. 6107, pp. 610705-12, 2006.
  • [26] F. J. Kamphoefner, "Ink jet printing,” IEEE Transact. Electron Devices, vol 19., pp. 584-593, 1998.
  • [27] W. E. Haas, "Liquid-crystal display research - the first 15 years,” Mol. Cryst. Liq. Cryst., vol. 94, pp. 1-31, 1983.[Crossref]
  • [28] P. S. Drzaic, "Polymer dispersed nematic liquid crystal for large area displays and light valves,” J. Appl. Phys., vol. 60, pp. 2142-2148, 1986.[Crossref]
  • [29] Frost and Sullivan, "Lab on a Chip (LOC) - Advances in Microfluidics,” Market Analysis, www.frost.com, 2004.
  • [30] Yole Développement, "Emerging Markets For Microfluidic Applications”, Market Analysis, www. i-micronews.com, 2011.
  • [31] H. van Heeren, "Standards for connecting microfluidic devices?,” Lab Chip, vol. 12, pp. 1022-1025, 2012.
  • [32] H. Becker, "Hype, hope and hubris: the quest for the killer application in microfluidics,” Lab Chip, vol. 9, pp. 2119-2122, 2009.[Crossref]
  • [33] R. Marie, A. Kristensen, "Nanofluidic devices towards single DNA molecule sequence mapping,” J. Biophoton., vol. 5, pp. 673-686, 2012.[Crossref]
  • [34] J. Wu, G. Zheng and L. M. Lee, "Optical imaging techniques in microfluidics and their applications,” Lab Chip, vol. 12, pp. 3566-3575, 2012.[Crossref]
  • [35] M. Brammer, C. Megnin, A. Voigt, M. Kohl, and T. Mappes, "Modular Optoelectronic Microfluidic Backplane for Total Analysis Systems,” J. Microelectromech. S., accepted for publication.
  • [36] N. Z. Danckwardt, M. Franzreb, A. E. Guber, V. Saile, "Pump-free transport of magnetic particles in microfluidic channels,” J. Magn. Magn. Mater., vol. 323, pp. 2776-2781, 2011.
  • [37] J. Ducrée, S. Haeberle, S. Lutz, S. Pausch, F. Von Stetten and R. Zengerle, "The centrifugal microfluidic Bio-Disk platform,” J. Micromech. Microeng., vol. 17, pp. S103-115, 2007.[Crossref]
  • [38] R. B. Fair, "Digital microfluidics: Is a true lab-ona- chip possible?,” Microfluid. Nanofluid., vol. 3, pp. 245-281, 2007.[Crossref]
  • [39] K. Chakrabarty, R. B. Fair, and J. Zeng, "Design Tools for Digital Microfluidic Biochips: Toward Functional Diversification and More than Moore,” IEEE Trans. Comput. Aided Des. Integrated Circ. Syst., vol. 29, pp. 1001-1016, 2010.
  • [40] K. W. Oh and C. H. Ahn, "A review of microvalves,” J. Micromech. Microeng., vol. 16, pp. R13-R39, 2006.[Crossref]
  • [41] T. Grund, C. Megnin, J. Barth, and M. Kohl, "Batch fabrication of shape memory actuated polymer microvalves by transfer bonding techniques,” J. Microelectron. Electron. Packaging, vol. 6, pp. 219-227, 2009.
  • [42] C. Megnin, M. Brammer, H. Luckert, and M. Kohl, "SMA Microvalves with Plug in Interface for a Modular Fluidic Backplane,” Actuator, 18.-20.6.2012, Bremen, 2012.
  • [43] M. A. Unger, H. P. Chou, T. Thorsen, A. Scherer, S. R. Quake, "Monolithic microfabricated valves and pumps by multilayer soft lithography,” Science, vol. 288, pp. 113-116, 2000.
  • [44] B. E. Rapp, L. Carneiro, K. Länge, and M. Rapp, "An indirect microfluidic flow injection analysis (FIA) system allowing diffusion free pumping of liquids by using tetradecane as intermediary liquid,” Lab Chip, vol. 9, pp. 354-356, 2009.[Crossref]
  • [45] B. Mosadegh, T. Bersano-Begey, J. Y. Park, M. A. Burns, and S. Takayama, "Next-generation integrated microfluidic circuits,” Lab Chip, vol. 11, pp. 2813-2818, 2011.[Crossref]
  • [46] P. K. Yuen, J. T. Bliss, C. C. Thompson, and R. C. Peterson, "Multidimensional modular microfluidic system,” Lab Chip, vol. 9, pp. 3303-3305, 2009.[Crossref]
  • [47] G. Perozziello, G. Simone, P. Candeloro, F. Gentile, N. Malara, R. Larocca, M. Coluccio, S. A. Pullano, L. Tirinato, O. Geschke, and E. Di Fabrizio, "A Fluidic Motherboard for Multiplexed Simultaneous and Modular Detection in Microfluidic Systems for Biological Application,” Micro Nanosys., vol. 2, pp. 227-238, 2010.[Crossref]
  • [48] S. M. Langelier, E. Livak-Dahl, A. J. Manzo, B. N. Johnson, N. G. Walter, and M. A. Burns, "Flexible casting of modular self-aligning microfluidic assembly blocks,” Lab Chip, vol. 11, pp. 1679-1688, 2011.[Crossref]
  • [49] M. Brammer, C. Megnin, T. Parvanta, M. Siegfarth, T. Mappes, and D. G. Rabus, "A modular microfluidic backplane for control and interconnection of optofluidic devices,” IEEE Winter Topicals, pp. 101-102, 2011.
  • [50] A. M. Christensen, D. A. Chang-Yen, and B. K. Gale, "Characterization of interconnects used in PDMS microfluidic systems,” J. Micromech. Microeng., vol. 15, pp. 928-934, 2005.[Crossref]
  • [51] R. Lo and E. Meng, "Reusable, adhesiveless and arrayed in-plane microfluidic interconnects,” J. Micromech. Microeng., vol. 21, pp. 025021-025035, 2011.
  • [52] C. González, S. D. Collins, and R. L. Smith, "Fluidic Inter-connects for Modular Assembly of Chemical Microsystems,” Sens. Actuators B, vol. 49, pp. 40-45, 1998.
  • [53] G. Perozziello, F. Bundgaard, O. Geschke, "Fluidic inter-connections for microfluidic systems: A new integrated fluidic interconnection allowing plug ’n’ play functionality,” Sens. Actuators B, vol. 130, pp. 947-953, 2008.
  • [54] V. Nittis, R. Fortt,C. H. Legge and A. J. De Mello, "A high-pressure interconnect for chemical microsystem applications,” Lab Chip, vol. 1, pp. 148-152, 2001.[Crossref]
  • [55] L. Eldada and L. W. Shacklette, "Advances in polymer integrated optics,” IEEE J. Sel. Topics Quantum Electron., vol. 6, no. 1, pp. 54-68, 2000.[Crossref]
  • [56] H. Ma, A. K.-Y. Jen, and L. R. Dalton, "Polymer-Based Optical Waveguides: Materials, Processing, and Devices,” Adv. Mater., vol. 14, pp. 1339-1365, 2002.
  • [57] D. G. Rabus, P. Henzi, and J. Mohr, "Photonic Integrated Circuits by DUV-Induced Modification of Polymers,” IEEE Photon. Tech. Lett., vol. 17, pp. 591-593, 2005.[Crossref]
  • [58] D. G. Rabus, M. Bruendel, Y. Ichihashi, A. Welle, R. A. Seger, and M. Isaacson, "A Bio-Fluidic-Photonic Platform Based on Deep UV Modification of Polymers,” IEEE J. Sel. Topics Quantum Electron., vol. 13, pp. 214-222, 2007.[Crossref]
  • [59] J. Halldorsson, N. B. Arnfinnsdottir, A. B. Jonsdottir, B. Agnarsson, and K. Leosson, "High index contrast polymer waveguide platform for integrated biophotonics,” Opt. Express, vol. 18, pp. 16217-16226, 2010.[Crossref]
  • [60] T. Mappes, C. Vannahme, M. Schelb, U. Lemmer, J. Mohr, "Design for optimized coupling of organic semiconductor laser light into polymer waveguides for highly integrated biophotonic sensors,” Microelectron. Eng., vol 86, pp. 1449-1501, 2009.
  • [61] L. Y. Lin, E. L. Goldstein, and R. W. Tkach, "Freespace micromachined optical switches with submillisecond switching time for large-scale optical crossconnects,” IEEE Photon. Technol. Lett., vol. 10, pp. 525-527, 1998.[Crossref]
  • [62] T. Yamamoto, J. Yamaguchi, N. Takeuchi, A. Shimizu, E. Higurashi, R. Sawada, Y. Uenishi, "A three- dimensional MEMS optical switching module having 100 input and 100 output ports,” IEEE Photon. Technol. Lett., vol. 10, pp. 1360-1362, 2003.[Crossref]
  • [63] M. Brammer, C. Megnin, M. Siegfarth, S. Sobich, A. Hofmann, D. G. Rabus, and T. Mappes, "Optofluidic backplane as a platform for modular system design,” Proc. SPIE, vol. 8251, pp. 82510O-8, 2012.
  • [64] U. Wallrabe, H. Dittrich, G. Friedsam, T. Hanemann, J. Mohr, K. Müller, V. Piotter, P. Ruther, T. Schaller, W. Zissler, "Micro-molded easy-assembly multi fiber connector: RibCon§,” Microsyst. Technol., vol. 8, pp. 83-87, 2002.[Crossref]
  • [65] M. Brammer, M. Siegfarth, T. Mappes, "Optical coupling,” Patent application DE102012004656, US13421485 (15.3.2011).
  • [66] R. Turton, Analysis, synthesis, and design of chemical processes, Prentice Hall, Upper Saddle River, NJ, US, 3. Edt., 2009.
  • [67] K. A. Bakeev, Process analytical technology, Blackwell, Oxford, UK, 2. Edt., 2010.
  • [68] U. Levy, R. Shamai, "Tubable optofluidic devices,” Microfluid. Nanofluid., vol. 4, pp. 97-105, 2008.[Crossref]
  • [69] N.-T. Nguyen, "Micro-optofluidic Lenses: A review,” Biomicrofluid., vol. 4, pp. 031501-15, 2010.[Crossref]
  • [70] B. Berge, J. Peseux, "Variable focal lens controlled by an external voltage: an application of electrowetting,” Eur. Phys. J. E, vol. 3, pp. 159-163, 2000.[Crossref]
  • [71] T. Krupenkin, S. Yang, and P. Mach, "Tubable liquid microlens,” Appl. Phys. Lett., vol. 82, pp. 316-318, 2003.[Crossref]
  • [72] S. Kuiper and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras,” Appl. Phys. Lett., vol. 85, pp. 1128-1130, 2004.[Crossref]
  • [73] L. Dong and H. R. Jiang, "Variable-focus liquid lens for miniature cameras,” J. Microelectromech. S., vol. 17, pp. 381-392, 2008.
  • [74] J. J. Shi, Z. Stratton, S. C. S. Lin, H. Huang, and T. J. Huang, "Tunable optofluidic microlens through active pressure control of an air-liquid interface,” Microfluid. Nanofluid., vol. 9, pp. 313-318, 2010.[Crossref]
  • [75] D. Y. Zhang, V. Lien, Y. Berdichevsky, J. H. Choi, and Y. H. Lo, "Fluidic adaptive lens with high focal length tenability,” Appl. Phys. Lett., vol. 82, pp. 3171-3173, 2003.[Crossref]
  • [76] A. Werber and H. Zappe, "Tubable microfluidic microlenses,” Appl. Opt., vol. 44, pp. 3238-3245, 2005.[Crossref]
  • [77] H. Ren and S.-T.Wu, "Variable-focus liquid lens,” Opt. Express, vol. 15, pp. 5931-5936, 2007.[Crossref]
  • [78] D. V. Vezenov, B. T. Mayers, R. S. Conroy, G. M. Whitesides, P. T. Snee, Y. Chan, D. G. Nocera, and M. G. Bawendi, "A Low-Threshold, High-Efficiency Microfluidic Waveguide Laser,” J. Am. Chem. Soc., vol. 127, pp. 8952-8953, 2005.
  • [79] J. C. Gala, J. Torres, M. Belotti, Q. Kou, and Y. Chen, "Microfluidic tunable dye laser with integrated mixer and ring resonator,” Appl. Phys. Lett., vol. 86, pp. 264101-3, 2005.[Crossref]
  • [80] Z. Y. Li, Z. Y. Zhang, T. Emery, A. Scherer, and D. Psaltis, "Single mode optofluidic distributed feedback dye laser,” Opt. Express, vol. 14, pp. 696-701, 2006[Crossref]
  • [81] M. Gersborg-Hansen and A. Kristensen, "Tunability of optofluidic distributed feedback dye lasers,” Opt. Express, vol. 15, pp. 137-142, 2007.[Crossref]
  • [82] S. Lacey, I. M. White, Y. Sun, S. I. Shopova, J. M. Cupps, P. Zhang, and X. Fan, "Versatile opto-fluidic ring resonator lasers with ultra-low threshold,” Opt. Express, vol. 15, pp. 15523-15530, 2007.[Crossref]
  • [83] J. D. Suter, Y. Sun, D. J. Howard, J. A. Viator, and X. Fan, "PDMS embedded opto-fluidic microring resonator lasers,” Opt. Express, vol. 16, pp. 10248-10253, 2008.[Crossref]
  • [84] C. Vannahme, M. B. Christiansen, T. Mappes, and A. Kristensen, "Optofluidic dye laser in a foil,” Opt. Express, vol. 18, pp. 9280-9285, 2010.[Crossref]
  • [85] W. Song and D. Psaltis, "Pneumatically tunable optofluidic dye laser,” Appl. Phys. Lett., vol. 96, pp. 081101-3, 2010.[Crossref]
  • [86] Y. Yang , A. Q. Liu , L. Lei , L. K. Chin , C. D. Ohl , Q. J. Wang and H. S. Yoon, "A tunable 3D optofluidic waveguide dye laser via two centrifugal Dean flow streams,” Lab Chip, vol. 11, pp. 3182-3187, 2011.[Crossref]
  • [87] T. Wienhold, F. Breithaupt, C. Vannahme, M. B. Christiansen, W. Dörfler, A. Kristensen and T. Mappes "Diffusion driven optofluidic dye lasers encapsulated into polymer chips,” Lab Chip, DOI: 10.1039/C2LC40494J.[Crossref]
  • [88] D. B. Wolfe, R. S. Conroy, P. Garstecki, B. T. Mayers, M. A. Fischbach, K. E. Paul, M. Prentiss, and G. M. Whitesides, "Dynamic control of liquid-core/liquidcladding optical waveguides,” Proc. Ntl Acad. Sci. USA, vol. 101, pp. 12434-12438, 2004.[Crossref]
  • [89] P. Measor, S. Kühn, E. J. Lunt, B. S. Phillips, A. R. Hawkins, and H. Schmidt, "Hollow-core waveguide characterization by optically induced particle transport,” Opt. Lett., vol. 33, pp. 672-674, 2008.[Crossref]
  • [90] H. Schmidt and A. R. Hawkins, "Optofluidic waveguides: I. Concepts and implementations,” Microfluid. Nanofluid., vol. 4 pp. 3-16, 2008.
  • [91] A. R. Hawkins and H. Schmidt, "Optofluidic waveguides: II. Fabrication and structtures,” Microfluid. Nanofluid., vol. 4 pp. 17-32, 2008.[Crossref]
  • [92] S. H. Cho, "Optofluidic Waveguides in Teflon AFCoated PDMS Microfluidic Channels,” IEEE Phton. Technol. Lett., vol. 21, pp. 1057-1059, 2009.
  • [93] J. D. Suter, W. Lee, D. J. Howard, E. Hoppmann, I. M. White, and X. Fan, "Demonstration of the coupling of optofluidic ring resonator lasers with liquid waveguides,” Opt. Lett., vol. 35, pp. 2997-2999, 2010.[Crossref]
  • [94] A. J. Chung and D. Erickson, "Optofluidic waveguides for reconfigurable photonic systems,” Opt. Express, vol. 19, pp. 8602-8609, 2011.[Crossref]
  • [95] N.-T. Nguyen, T.-F. Kong, J.-H. Goh, and C. L.-N. Low, "A micro optofluidic splitter and switch based on hydrodynamic spreading,” J. Micromech. Microeng., vol. 17, pp. 2169-2174, 2007.[Crossref]
  • [96] A. Groisman, S. Zamek, K. Campbell, L. Pang, U. Levy, and Y. Fainman, "Optofluidc 1x4 Switch,” Opt. Express, vol. 16, pp. 13499-13508, 2008.[Crossref]
  • [97] B.-T. Liao, H.-H. Shen, H.-H. Liao, and Y.-J. Yang, "A bi-stable 2x2 optical switch monolithically integrated with variable optical attenuators,” Opt. Express, vol. 17, pp. 19919-19925, 2009.[Crossref]
  • [98] A. H. J. Yang and D. Erickson, "Optofluidic ring resonator switch for optical particle transport,” Lab Chip, vol. 10, pp. 769-774, 2010.[Crossref]
  • [99] W. Song and D. Psaltis, "Pneumatically tunable optofluidic 2x2 switch for reconfigurable optical ciruit,” Lab Chip, vol. 11, pp. 2397-2402, 2011. [Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.