Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results
2014 | 2 | 1 |

Article title

Electric Field Distribution in Hybrid Solar Cells Comprising an Organic Donor Polymer and Amorphous Silicon

Content

Title variants

Languages of publication

EN

Abstracts

EN
We present a study on the performance and
analysis of hybrid solar cells comprising a planar heterojunction
between between a conjugated donor polymer,
P3HT or PCPDTBT, and hydrogenated amorphous silicon
(a-Si:H). A comparison of the modeled absorption spectra
of the layer stack with the measured external quantum efficiency is used to investigate the contribution of the inorganic
and organic material to the photocurrent generation
in the device. Although both materials contribute to the
photocurrent, the devices exhibit poor quantum efficiencies
and low short circuit currents. Bandstructure simulations
of the hybrid layer structure reveal that an unfavorable
electric field distribution within the planar multilayer
structure limits the performance. Using electroabsorption
measurements we can show that the electric field is extremelyweak
in the amorphous silicon but strong in the organic
material. The situation changes drasticallywhen the
conjugated polymer is p-doped. Doping not only increases
the conductivity of the organic material, but also restores
the electric field in the amorphous silicon layer. Optimized
hybrid solar cells comprising thin doped P3HT layers exhibit
energy conversion efficiencies (ECE) up to 2.8 %.

Keywords

Publisher

Year

Volume

2

Issue

1

Physical description

Dates

accepted
10 - 1 - 2014
received
16 - 8 - 2013
online
9 - 6 - 2014

Contributors

author
  • Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D-14476 Potsdam, Germany
author
  • Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D-14476 Potsdam, Germany
author
  • Universität Potsdam, Institute of Physics and Astronomy, Soft Matter Physics, D-14476 Potsdam, Germany
author
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
author
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
author
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
author
  • Department of Silicon Photovoltaics, Helmholtz Center Berlin for Materials and Energy, Kekulestr. 5, D-12489 Berlin, Germany
  • IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
author
  • IEK5-Photovoltaik, Forschungszentrum Jülich, D-52425 Jülich, Germany
author
  • Bergische Universität Wuppertal, Macromolecular Chemistry and Institute for Polymer Technology, Gauss-Strasse 20, D-42097 Wuppertal, Germany
author
  • Bergische Universität Wuppertal, Macromolecular Chemistry and Institute for Polymer Technology, Gauss-Strasse 20, D-42097 Wuppertal, Germany

References

  • [1] G. Li, R. Zhu, and Y. Yang, Nature Photonics 6, 153 (2012).[Crossref]
  • [2] P. J. Alet, S. Palacin, P. R. I. Cabarrocas, B. Kalache, M. Firon,and R. de Bettignies, European Physical Journal-AppliedPhysics 36, 231 (2006).
  • [3] V. Gowrishankar, S. R. Scully, M. D. McGehee, Q. Wang, andH. M. Branz, Applied Physics Letters 89, 3 (2006).
  • [4] E. L. Williams, G. E. Jabbour, Q. Wang, S. E. Shaheen, D. S.Ginley, and E. A. Schiff, Applied Physics Letters 87, 3 (2005).
  • [5] J. H. Seo, D. H. Kim, S. H. Kwon, M. Song, M. S. Choi, R. S. Y.,H.W. Lee, Y. C. Park, J. D. Kwon, K. S. Nam, Y. Jeong, J.W. Kang,and C. S. Kim, Advanced Materials 24, 4523 (2012).[Crossref]
  • [6] K. Kim, J. Liu, M. A. G. Namboothiry, and D. L. Carroll, AppliedPhysics Letters 90, 3 (2007).
  • [7] C. H. Chao, C. H. Chan, F. C. Wu, J. J. Huang, S. Y. Lien, K. W.Weng, and H. L. Cheng, Solar Energy Materials and Solar Cells95, 2407 (2011).
  • [8] R. A. Street, Hydrogenated Amorphous Silicon, Cambridge UniversityPress, Cambridge, 1 edition, 1991.
  • [9] M. Morana, M. Wegscheider, A. Bonanni, N. Kopidakis, S. Shaheen,M. Scharber, Z. Zhu, D. Waller, R. Gaudiana, and C. Brabec, Adv. Func. Mater. 18, 1757 (2008).
  • [10] I. Lange, J. C. Blakesley, J. Frisch, A. Vollmer, N. Koch, andD. Neher, Physical Review Letters 106, 4 (2011).
  • [11] R. Stangl, C. Leendertz, and J. Haschke, Solar Energy (RDRugescu, ed.), INTECH, Croatia , 319 (2010).
  • [12] S. Albrecht, W. Schindler, J. Kurpiers, J. Kniepert, J. C.Blakesley, I. Dumsch, S. Allard, K. Fostiropoulos, U. Scherf,and D. Neher, Journal of Physical Chemistry Letters 3, 640(2012).[Crossref]
  • [13] D. Mühlbacher, M. Scharber, M. Morana, Z. Zhu, D. Waller,R. Gaudiana, and C. J. Brabec, Advanced Materials 18, 2884(2006).[Crossref]
  • [14] K. F. Jeltsch, M. Schädel, J. B. Bonekamp, P. Niyamakom,F. Rauscher, H.W. A. Lademann, I. Dumsch, S. Allard, U. Scherf,and K. Meerholz, Adv. Funct. Mater. 22, 397 (2012).[Crossref]
  • [15] Z. Zhu, D. Waller, R. Gaudiana, M. Morana, D. Mühlbacher,M. Scharber, and C. J. Brabec, Macromolecules 40, 1981(2007).
  • [16] G. F. Burkhard, E. T. Hoke, and M. D. McGehee, Advanced Materials22, 3293 (2010).[Crossref]
  • [17] L. A. A. Pettersson, L. S. Roman, and O. Inganas, Journal ofApplied Physics 86, 487 (1999).
  • [18] F. C. Spano, J. Clark, C. Silva, and R. H. Friend, Journal of ChemicalPhysics 130, 16 (2009).
  • [19] C. Tanase, E. J. Meijer, P. W. M. Blom, and D. M. de Leeuw,Physical Review Letters 91, 4 (2003).
  • [20] Y. A. Zhang and P. W. M. Blom, Applied Physics Letters 97, 3(2010).
  • [21] I. Salzmann, G. Heimel, S. Duhm, M. Oehzelt, P. Pingel, B. M.George, A. Schnegg, K. Lips, R. P. Blum, A. Vollmer, andN. Koch, Physical Review Letters 108, 035502 (2012).[Crossref]
  • [22] R. Stangl, M. Kriegel, S. Kirste, M. Schmidt, and W. Fuhs,Proc. IEEE-31, 31th IEEE Photovoltaics Specialists Conference,Orlando, USA (January 2005).
  • [23] L. Korte and M. Schmidt, Journal of Non-Crystalline Solids 354,2138 (2008).
  • [24] P. Pingel, R. Schwarzl, and D. Neher, Applied Physics Letters100, 143303 (2012).[Crossref]
  • [25] P. A. Lane, J. Rostalski, C. Giebeler, S. J.Martin, D. D. C. Bradley,and D. Meissner, Solar Energy Materials and Solar Cells 63, 3(2000).
  • [26] M. C. Gather, R. Jin, J. de Mello, D. D. C. Bradley, and K. Meerholz,Applied Physics B 95, 113 (2009).
  • [27] I. H. Campbell, J. P. Ferraris, T. W. Hagler, M. D. Joswick, I. D.Parker, and D. L. Smith, Polymers for Advanced Technologies8, 417 (1997).[Crossref]
  • [28] J. H. Lyou and E. A. Schiff, Review of Scientific Instruments 75,921 (2004).
  • [29] G. Weiser, U. Dersch, and P. Thomas, Philosophical MagazineB-Physics of CondensedMatter Statistical Mechanics ElectronicOptical and Magnetic Properties 57, 721 (1988).
  • [30] R. Österbacka, C. P. An, X. M. Jiang, and Z. V. Vardeny, Science287, 839 (2000).
  • [31] P. J. Brown, H. Sirringhaus, and R. H. Friend, Synthetic Metals101, 557 (1999).[Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_oph-2014-0004
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.