Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 59 | 4 | 169-173

Article title

Silver nanoparticle accumulation by aquatic organisms – neutron activation as a tool for the environmental fate of nanoparticles tracing

Content

Title variants

Languages of publication

EN

Abstracts

EN
Water environments are noted as being some of the most exposed to the influence of toxic nanoparticles (NPs). Therefore, there is a growing need for the investigation of the accumulation and toxicity of NPs to aquatic organisms. In our studies neutron activation followed by gamma spectrometry and liquid scintillation counting were used for studying the accumulation of silver nanoparticles (AgNPs) by freshwater larvae of Chironomus and fish Danio rerio. The influence of exposition time, concentration and the source of nanoparticles on the efficiency of AgNP accumulation were studied. It was found that AgNPs are efficiently accumulated by Chironomid larvae for the first 30 hours of exposition; then, the amount of silver nanoparticles decreases. The silver content in larvae increases together with the NP concentration in water. Larvae which have accumulated AgNPs can be a source of nanoparticles for fish and certainly higher levels of Ag in the trophic chain. In comparison with water contamination, silver nanoparticles are more efficiently accumulated if fish are fed with AgNP-contaminated food. Finally, it was concluded that the applied study strategy, including neutron activation of nanoparticles, is very useful technique for tracing the uptake and accumulation of NPs in organisms

Publisher

Journal

Year

Volume

59

Issue

4

Pages

169-173

Physical description

Dates

published
1 - 12 - 2014
received
2 - 10 - 2014
accepted
27 - 10 - 2014
online
30 - 12 - 2014

Contributors

  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302
  • Department of Analytical Chemistry, Institute of Nuclear Chemistry and Technology, 16 Dorodna Str., 03-195 Warsaw, Poland
  • Isotope Laboratory, Faculty of Biology, University of Warsaw, 1 Miecznikowa Str., 02-096 Warsaw, Poland, Tel./Fax: +48 22 554 2302

References

  • 1. Ahamed, M., AlSalhi, M. S., & Siddiqui, M. K. J. (2010). Silver nanoparticle applications and human health. Clin. Chim. Acta, 411, 1841-1848. DOI: 10.1016/j.cca.2010.08.016.[Crossref][WoS]
  • 2. Capek, I. (2004). Preparation of metal nanoparticles in water-in-oil (w/o) microemulsions. Adv. Colloid Interface Sci., 110, 49-74. DOI: 10.1016/j. cis.2004.02.003.[Crossref]
  • 3. Mahendra, R., Alka, Y., & Aniket, G. (2009). Silver nanoparticles as a new generation of antimicrobials. Biotechnol. Adv., 27(1), 76-83. DOI: 10.1016/j. biotechadv.2008.09.002.[WoS][Crossref]
  • 4. Frattini, A., Pellegri, N., Nicastro, D., & Sanctis, O. D. (2005). Effect of amine groups in the synthesis of Ag nanoparticles using aminosilanes. Mater. Chem. Phys., 94, 148-152. DOI:10.1016/j.matchemphys. 2005.04.023[Crossref]
  • 5. Rand, B. P., Peumans, P., & Forrest, S. R. (2004). Long- -range absorption enhancement in organic tandem thin-fi lm solar cells containing silver nanoclusters. J. Appl. Phys., 96, 7519-7526. DOI:10.1063/1.1812589.[Crossref]
  • 6. Zhai, H. J., Sun, D. W., & Wang, H. S. (2006). Catalytic properties of silica/silver nanocomposites. J. Nanosci. Nanotechnol., 6, 1968-1972. DOI:10.1166/ jnn.2006.320.[Crossref]
  • 7. Yamamoto, S., & Watarai, H. (2006). Surface-enhanced Raman spectroscopy of dodecanethiol-bound silver nanoparticles at the liquid/liquid interface. Langmuir, 22, 6562-6569. DOI: 10.1021/la0603119.[PubMed][Crossref]
  • 8. Bystrzejewska-Piotrowska, G., Golimowski, J., & Urban, L. (2009). Nanoparticles: Their potential toxicity, waste and environmental management. Waste Manage., 29(9), 2587-2595. DOI: 10.1016/j. wasman.2009.04.001.[Crossref]
  • 9. Fabrega, J., Luoma, S. N., Tyler, C. R., Galloway, T. S., & Lead, J. R. (2011). Silver nanoparticles: Behaviour and effects in the aquatic environment. Environ. Int., 37, 517-531. DOI: 10.1016/j.envint.2010.10.012.[WoS][Crossref]
  • 10. Blinova, I., Niskanen, J., Kajankari, P., Kanarbik, L., Käkinen, A., Tenhu, H., Penttinen, O. P., & Kahru, A. (2013). Toxicity of two types of silver nanoparticles to aquatic crustaceans Daphnia magna and Thamnocephalus platyurus. Environ. Sci. Pollut. Res., 20, 3456-3463. DOI: 10.1007/s11356-012-1290-5.[WoS][Crossref]
  • 11. Tang, J., Xiong, L., Wang, S., Wang, J., Liu, L., Li, J., Yuan, F., & Xi, T. (2009). Distribution, translocation and accumulation of silver nanoparticles in rats. J. Nanosci. Nanotechnol., 9(8), 4924-4932. DOI:10.1166/ jnn.2009.1269.[Crossref][WoS]
  • 12. Pinder, L. C. V. (1986). Biology of freshwater chironomidae. Annu. Rev. Entomol., 31, 1-23. DOI: 10.1146/annurev.en.31.010186.000245.[Crossref]
  • 13. OECD. (2004). Test guideline 218 sediment-water chironomid toxicity test using spiked sediment.
  • 14. Krantzberg, G. (1989). Metal accumulation by chironomid larvae: the effects of age and body weight on metal body burdens. Hydrobiologia, 188/189, 497-506. DOI: 10.1007/BF00027817.[Crossref]
  • 15. Goodyear, K. L., & McNeill, S. (1999). Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. Sci. Total Environ., 229, 1-19. DOI: 10.1016/S0048-9697(99)00051-0.[Crossref]
  • 16. Azevedo-Pereira, H. M. V. S., Abreu, S. N., Lemos, M. F. L., & Soares, A. M. V. M. (2012). Bioaccumulation and elimination of waterborne mercury in the midge larvae, Chironomus riparius Meigen (Diptera: Chironomidae). Bull. Environ. Contam. Toxicol., 89, 245-250. DOI: 10.1007/s00128-012-0674-z.[Crossref][WoS]
  • 17. Oughton, D. H., Hertel-AAS, T., Pollicer, E., Mendoza, E., & Joner, E. J. (2008). Neutron activation of engineered nanoparticles as a tool for tracing their environmental fate and uptake in organisms. Environ. Toxicol. Chem., 27(9), 1883-1887. DOI: 10.1897/07-578.1.[Crossref][WoS]
  • 18. Bystrzejewska-Piotrowska, G., Asztemborska, M., Steborowski, R., Ryniewicz, J., Polkowska-Motrenko, H., & Danko, B. (2012). Application of neutron activaton for investigation of Fe3O4 nanoparticles accumulation by plants. Nukleonika, 57(3), 427-430.

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nuka-2014-0023
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.