Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl

PL EN


Preferences help
enabled [disable] Abstract
Number of results

Journal

2014 | 59 | 4 | 145-151

Article title

Evaluation of circulating endothelial cells in the rat after acute and fractionated whole-body gamma irradiation

Content

Title variants

Languages of publication

EN

Abstracts

EN
Purpose: Damage to vascular endothelial cells is a well recognised complication of the irradiation. Our objective was to determine the gamma-irradiation effect on the rat circulating endothelial cells (CEC). Material and methods: Eight-week old rats were divided into four groups: group 1 - rats were exposed to acute whole- -body gamma irradiation with a wide range of single doses (0.5, 1, 2, 4 and 8 Gy), group 2 - rats were exposed to fractionated low doses of irradiation (0.1, 0.5 and 1 Gy) every three days for two months, group 3 as group 2, but followed by two months of rest, group 4 were control animals. CEC (CD146 positive cells) in group 1 were counted following CD146-based immuno-magnetic separation after one day and one week, as well as at the end of experiment in the other groups. Results: Quantified CEC showed that there was a dose-dependent reduction in CEC count in group 1 (one week after irradiation) and group 2. A partial re-population of CEC was observed at the end of experiment in both group 1 and group 2 compared to control group. Group 3 showed a significant increase in CEC levels as compared with group 2 without reaching the control level. Conclusion: The number of CEC (CD146 positive cells) in rats exposed to whole-body gamma irradiation was reduced in a dose-dependent manner and it partly recovered during the two-month interval after irradiation. We suggest that CEC count may be an indicator of the radiation-induced vascular damage.

Publisher

Journal

Year

Volume

59

Issue

4

Pages

145-151

Physical description

Dates

published
1 - 12 - 2014
accepted
25 - 9 - 2014
received
3 - 6 - 2014
online
30 - 12 - 2014

Contributors

  • Biomarkers Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS), Tel.: +963 213 2580, Fax: +963 11 611 2289,
  • Hematological Diseases Laboratory, Department of Radiation Medicine, Atomic Energy Commission of Syria (AECS)

References

  • 1. Adams, M. J., Hardenbergh, P. H., Constine, L. S., & Lipshultz, S. E. (2003). Radiation-associated cardiovascular disease. Crit. Rev. Oncol. Hematol., 45(1), 55-75. DOI: http://dx.doi.org/10.1016/S1040-8428(01)00227-X.[Crossref]
  • 2. Shimizu, Y., Kodama, K., Nishi, N., Kasagi, F., Suyama, A., Soda, M., Grant, E. J., Sugiyama, H., Sakata, R., Moriwaki, H., Hayashi, M., Konda, M., & Shore, R. E. (2010). Radiation exposure and circulatory disease risk: Hiroshima and Nagasaki atomic bomb survivor data, 1950-2003. BMJ, 340, b5349. Retrieved January 14, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1136/bmj.b5349.[Crossref]
  • 3. Little, M. P., Gola, A., & Tzoulaki, I. (2009). A model of cardiovascular disease giving a plausible mechanism for the effect of fractionated low-dose ionizing radiation exposure. PLoS Comput. Biol., 5(10), e1000539. Retrieved October 23, 2009, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1371/journal.pcbi.1000539.[Crossref]
  • 4. Halle, M., Gabrielsen, A., Paulsson-Berne, G., Gahm, C., Agardh, H. E., Farnebo, F., & Tornvall, P. (2010). Sustained inflammation due to nuclear factor-kappa b activation in irradiated human arteries. J. Am. Coll. Cardiol., 55(12), 1227-1236. DOI: 10.1016/j. jacc.2009.10.047.[Crossref]
  • 5. Boerma, M., & Hauer-Jensen, M. (2011). Preclinical research into basic mechanisms of radiation- -induced heart disease. Cardiol. Res. Pract. Retrieved October 4, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.4061/2011/858262.[Crossref]
  • 6. Bentzen, S. M. (2006). Preventing or reducing late side effects of radiation therapy: radiobiology meets molecular pathology. Nat. Rev. Cancer, 6(9), 702-713. DOI: 10.1038/nrc1950.[PubMed][Crossref]
  • 7. Sugihara, T., Hattori, Y., Yamamoto, Y., Qi, F., Ichikawa, R., Sato, A., Liu, M. Y., Abe, K., & Kanno, M. (1999). Preferential impairment of nitric oxide- -mediated endothelium-dependent relaxation in human cervical arteries after irradiation. Circulation, 100(6), 635-641. DOI: 10.1161/01.CIR.100.6.635.[Crossref]
  • 8. On, Y. K., Kim, H. S., Kim, S. Y., Chae, I. H., Oh, B. H., Lee, M. M., Park, Y. B., Choi, Y. S., & Chung, M. H. (2001). Vitamin C prevents radiation-induced endothelium-dependent vasomotor dysfunction and de-endothelialization by inhibiting oxidative damage in the rat. Clin. Exp. Pharmacol. Physiol., 28(10), 816-821. DOI: 10.1046/j.1440-1681.2001.03528.x.[Crossref]
  • 9. Qi, F., Sugihara, T., Hattori, Y., Yamamoto, Y., Kanno, M., & Abe, K. (1998). Functional and morphological damage of endothelium in rabbit ear artery following irradiation with cobalt60. Br. J. Pharmacol., 123(4), 653-660. DOI: 10.1038/sj.bjp.0701654.[Crossref]
  • 10. Soloviev, A. I., Tishkin, S. M., Parshikov, A. V., Ivanova, I. V., Goncharov, E. V., & Gurney, A. M. (2003). Mechanisms of endothelial dysfunction after ionized radiation: selective impairment of the nitric oxide component of endothelium-dependent vasodilation. Br. J. Pharmacol., 138(5), 837-844. DOI: 10.1038/ sj.bjp.0705079.[Crossref]
  • 11. Robbins, M. E., Jaenke, R. S., Bywaters, T., Golding, S. J., Rezvani, M., Whitehouse, E., & Hopewell, J. W. (1993). Sequential evaluation of radiation-induced glomerular ultrastructural changes in the pig kidney. Radiat. Res., 135(3), 351-364.[Crossref]
  • 12. Narayan, K., Withers, R., Garcia, C., Masoh, K., & Kumar, S. (1994). Guinea pig spinal cord as a model for the study of late radiation injury and repair. Int. J. Oncol., 4(4), 809-814. DOI: 10.3892/ijo.4.4.809.[Crossref]
  • 13. Ward, H. E., Kemsley, L., Davies, L., Holecek, M., & Berend, N. (1993). The pulmonary response to sublethal thoracic irradiation in the rat. Radiat. Res., 136(1), 15-21.[Crossref]
  • 14. Panes, J., Anderson, D. C., Miyasaka, M., & Granger, D. N. (1995). Role of leukocyte-endothelial cell adhesion in radiation induced microvascular dysfunction in rats. Gastroenterology, 108(6), 1761-1769.[Crossref]
  • 15. Kimura, H., Wu, N. Z., Dodge, R., Spencer, D. P., Klitzman, B. M., McIntyre, T. M., & Dewhirst, M. W. (1995). Inhibition of radiation-induced upregulation of leukocyte adhesion to endothelial cells with the platelet-activating factor inhibitor, BN52021. Int. J. Radiat. Oncol. Biol. Phys., 33(3), 627-633. DOI: http://dx.doi.org/10.1016/0360-3016(95)00205-D.[Crossref]
  • 16. Verheji, M., Dewit, L. G., Boomgaard, M. N., Brinkman, H. J., & Mourik, J. A. (1994). Ionizing radiation enhances platelet adhesion to the extracellular matrix of human endothelial cells by an increase in the release of von Willebrand factor. Radiat. Res., 137(2), 202-207.[Crossref]
  • 17. Law, M. P. (1981). Radiation induced vascular injury and its relation to late effects in normal tissues. Adv. Radiat. Biol., 9, 37-73.[Crossref]
  • 18. Woywodt, A., Blann, A. D., Kirsch, T., Erdbruegger, U., Banzet, N., Haubitz, M., & Dignat-George, F. (2006). Isolation and enumeration of circulating endothelial cells by immunomagnetic isolation: proposal of a definition and a consensus protocol. J. Thromb. Haemost., 4(3), 671-677. DOI: 10.1111/j.1538-7836.2006.01794.x.[Crossref]
  • 19. Goon, P. K., Lip, G. Y., Boos, C. J., Stonelake, P. S., & Blann, A. D. (2006). Circulating endothelial cells, endothelial progenitor cells, and endothelial microparticles in cancer. Neoplasia, 8(2), 79-88. DOI: 10.1593/neo.05592.[Crossref]
  • 20. Mancuso, P., Peccatori, F., Rocca, A., Calleri, A., Antoniotti, P., Rabascio, C., Saronni, L., Zorzino, L., Sandri, M. T., Zubani, A., & Bertolini, F. (2008). Circulating endothelial cell number and viability are reduced by exposure to high altitude. Endothelium, 15(1), 53-58. DOI: 10.1080/10623320802092344.[Crossref]
  • 21. Woywodt, A., Scheer, J., Hambach, L., Buchholz, S., Ganser, A., Haller, H., Hertenstein, B., & Haubitz, M. (2004). Circulating endothelial cells as a marker of endothelial damage in allogenic hematopoietic stem cell transplantation. Blood, 103(9), 3603-3605. DOI: 10.1182/blood-2003-10-3479.[Crossref]
  • 22. Zeng, L., Yan, Z., Wang, L., Du, B., Pan, X., & Xu, K. (2008). Irradiation is an early determinant of endothelial injury during hematopoietic stem cell transplantation. Transplant. Proc., 40(8), 2661-2664. DOI: 10.1016/j.transproceed.2008.08.062.[Crossref]
  • 23. Al-Massarani, G., & Najjar, F. (2013). Does occupational exposure to low ionizing radiation affect endothelium health? Nukleonika, 58(4), 527-531.
  • 24. Blann, A. D., Woywodt, A., Bertolini, F., Bull, T. M., Buyon, J. P., Clancy, R. M., Haubitz, M., Hebbel, R. P., Lip, G. Y., Mancuso, P., Sampol, J., Solovey, A., & Dignat-George, F. (2005). Circulating endothelial cells. Biomarker of vascular disease. Thromb. Haemost., 93(2), 228-235. DOI: http:/dx.doi.org/10.1160/TH04-09-0578.[Crossref]
  • 25. Menendez, J. C., Casanova, D., Amado, J. A., Salas, E., García-Unzueta, M. T., Fernandez, F., de la Lastra, L. P., & Berrazueta, J. R. (1998). Effects of radiation on endothelial function. Int. J. Radiat. Oncol. Biol. Phys., 41(4), 905-913. DOI: http://dx.doi.10.1016/S0360-3016(98)00112-6.[Crossref]
  • 26. Burger, D., & Touyz, R. M. (2012). Cellular biomarkers of endothelial health: microparticles, endothelial progenitor cells, and circulating endothelial cells. J. Am. Soc. Hypertens., 6(2), 85-99. DOI: 10.1016/j. jash.2011.11.003.[Crossref]
  • 27. Erdbruegger, U., Haubitz, M., & Woywodt, A. (2006). Circulating endothelial cells: A novel marker of endothelial damage. Clin. Chim. Acta, 373(1/2), 17-26.
  • 28. Garbuzova-Davis, S., Woods III, R. L., Louis, M. K., Zesiewicz, T. A., Kuzmin-Nichols, N., Sullivan, K. L., Miller, A. M., Hernandez-Ontiveros, D. G., & Sanberg, P. R. (2010). Reduction of circulating endothelial cells in peripheral blood of ALS patients. Plos ONE. 5(5), e10614. Retrieved May 12, 2010, from PubMed database on the World Wide Web: http://www.pubmed.gov. DOI: 10.1371/journal.pone.0010614.[Crossref]
  • 29. Barres, B. A., Hart, I. K., Coles, H. S., Burne, J. F., Voyvodic, J. T., Richardson, W. D., & Raff, M. C. (1992). Cell death and the control of survival in the oligodendrocyte lineage. Cell, 70(1), 31-46.[Crossref]
  • 30. Wang, J., Kumar, S., van Agthoven, A., Kumar, P., Pye, D., & Hunter, R. D. (1995). Irradiation induces upregulation of E9 protein (CD105) in human vascular endothelial cells. Int. J. Cancer, 62(6), 791-796. DOI: 10.1002/ijc.2910620624.[Crossref]
  • 31. Hirst, D. G., Denekamp, J., & Hobson, B. (1980). Proliferation studies of the endothelial and smooth muscle cells of the mouse mesentery after irradiation. Cell Tissue Kinet., 13(1), 91-104.
  • 32. Delorme, B., Basire, A., Gentile, C., Sabatier, F., Monsonies, F., Desouches, C., Blot-Chabaud, M., Uzan, G., Sampol, J., & Dignat-George, F. (2005). Presence of endothelial progenitor cells, distinct from mature endothelial cells, within human CD146+ blood cells.Thromb. Haemost., 94(6), 1270-1279. DOI: http://dx.doi.org/10.1160/TH05-07-0499.[Crossref]
  • 33. Pena, L. A., Fuks, Z., & Kolesnick, R. N. (2000). Radiation-induced apoptosis of endothelial cells in the murine central nervous system: protection by fibroblast growth factor and sphingomyelinase deficiency. Cancer Res., 60(2), 321-327.
  • 34. Li, Y., Chen, P., Haimovitz-Friedman, A., Reilly, R. M., & Wong, C. S. (2003). Endothelial apoptosis initiates acute blood-brain barrier disruption after ionizing radiation. Cancer Res., 63(18), 5950-5956.
  • 35. Bonnaud, S., Niaudet, C., Pottier, G., Gaugler, M. H., Millour, J., Barbet, J., Sabatier, L., & Paris, F. (2007). Sphingosine-1-phosphate protects proliferating endothelial cells from ceramide-induced apoptosis but not from DNA damage-induced mitotic death. Cancer Res., 67(4), 1803-1811. DOI: 10.1158/0008-5472. CAN-06-2802.[Crossref]
  • 36. Khodarev, N. N., Kataoka, Y., Murley, J. S., Weichselbaum, R. R., & Grdina, D. J. (2004). Interaction of amifostine and ionizing radiation on transcriptional patterns of apoptotic genes expressed in human microvascular endothelial cells (HMEC). Int. J. Radiat. Oncol. Biol. Phys., 60(2), 553-563. DOI: http://dx.doi.org/10.1016/j.ijrobp.2004.04.060.[Crossref]
  • 37. Nübel, T., Damrot, J., Roos, W. P., Kaina, B., & Fritz, G. (2006). Lovastatin protects human endothelial cells from killing by ionizing radiation without impairing induction and repair of DNA double-strand breaks. Clin. Cancer Res., 1(12), 933-939. DOI: 10.1158/1078-0432.CCR-05-1903.[Crossref]
  • 38. Santana, P., Pena, L. A., Haimovitz-Friedman, A., Martin, S., Green, D., McLoughlin, M., Cordon- -Cardo, C., Schuchman, E. H., Fuks, Z., & Kolesnick, R. (1996). Acid sphingomyelinase-deficient human lymphoblasts and mice are defective in radiation- -induced apoptosis. Cell, 86(2), 189-199. DOI: http://dx.doi.org/10.1016/S0092-8674(00)80091-4.[Crossref]
  • 39. Paris, F., Fuks, Z., Kang, A., Capodieci, P., Juan, G., Ehleiter, D., Haimovitz-Friedman, A., Cordon-Cardo, C., & Kolesnick, R. (2001). Endothelial apoptosis as the primary lesion initiating intestinal radiation damage in mice. Science, 293(5528), 293-297. DOI:10.1126/science.1060191.[Crossref]
  • 40. Marathe, S., Schissel, S. L., Yellin, M. J., Beatini, N., Mintzer, R., Williams, K. J., & Tabas, I. (1998). Human vascular endothelial cells are a rich and regulatable source of secretory sphingomyelinase. Implications for early atherogenesis and ceramide mediated cell signaling. J. Biol. Chem., 273(7), 4081-4088. DOI: 10.1074/jbc.273.7.4081.[Crossref]
  • 41. Farjado, L. F., Brown, J. M., & Glastein, E. (1976). Glomerular and juxtaglomerular lesions in radiation nephropathy. Radiat. Res., 68(1), 177-183. DOI: 10.2307/3574547.[Crossref]
  • 42. Baker, D. G., & Krochak, R. J. (1989). The response of the microvascular system to radiation: a review. Cancer Invest., 7(3), 287-294.[Crossref]
  • 43. Eissner, G., Kohlhuber, F., Grell, M., Ueffing, M., Scheurich, P., Hieke, A., Multhoff, G., Bornkamm, G. W., & Holler, E. (1995). Critical involvement of transmembrane tumor necrosis factor-alpha in endothelial programmed cell death mediated by ionizing radiation and bacterial endotoxin. Blood, 86(11), 4184-4193.
  • 44. Langley, R. E., Bump, E. A., Quartuccio, S. G., Medeiros, D., & Braunhut S. J. (1997). Radiation- -induced apoptosis in microvascular endothelial cells. Br. J. Cancer, 75(5), 666-672. DOI:10.1038/ bjc.1997.119.[Crossref]
  • 45. Salovsky, P. T., & Shopova, V. L. (1992). Early biological effects of whole body irradiation on rat lungs. Radiat. Environ. Biophys., 31(4), 333-341. DOI: 10.1007/BF01210213.[Crossref]
  • 46. Savla, U., & Waters, C. M. (1998). Barrier function of airway epithelium: effects of radiation and protection by keratinocyte growth factor. Radiat. Res., 150(2), 195-203.
  • 47. Klein-Soyer, C., Beretz, A., Cazenave, J. P., Driot, F., & Maffrand, J. P. (1990). Behavior of confluent endothelial cells after irradiation. Modulation of wound repair by heparin and acidic fibroblast growth factor. Biol. Cell., 68(1/3), 231-238. DOI: 10.1016/0248-4900(90)90313-R.[Crossref]
  • 48. Zhou, M., Dong, Q., & Ts’ao, C. (1988). Susceptibility of irradiated bovine aortic endothelial cells to injury. Am. J. Pathol., 133(2), 277-284.
  • 49. Luckey, T. D. (2008). The health effects of low-dose ionizing radiation. J. Am. Phys. Surg., 13(2), 39-42.
  • 50. Suzuki, K., & Yamashita, S. (2012). Low-dose radiation exposure and carcinogenesis. Jpn. J. Clin. Oncol., 42(7), 563-568. DOI: 10.1093/jjco/hys078.[Crossref]
  • 51. Ahmad, M., Khurana, N. R., & Jaberi, J. E. (2007). Ionizing radiation decreases capillary-like structure formation by endothelial cells in vitro. Microvasc. Res., 73(1), 14-19. DOI: 10.1016/j.mvr.2006.08.005.[Crossref]
  • 52. Salloum, R. M., Jaskowiak, N. T., Mauceri, H. J., Seetharam, S., Beckett, M. A., Koons, A. M., Hari, D. M., Gupta, V. K., Reimer, C., Kalluri, R., Posner, M. C., Hellman, S., Kufe, D. W., & Weichselbaum, R. R. (2000). NM-3, an isocoumarin, increases the antitumor effects of radiotherapy without toxicity. Cancer Res., 60(24), 6958-6963.
  • 53. Abdollahi, A., Lipson, K. E., Weber, K. J., Hahnfeldt, P., Hlatky, L., Debus, J., Howlett, A. R., & Huber, P. (2003). SU5416 and SU6668 decrease angiogenic effects of radiation-induced factor productions by tumour cells and amplify the direct anti-endothelial action of radiation in vitro. Cancer Res., 63(13), 3755-3763.
  • 54. Krum, J. M., Kenyon, K. L., & Rosenstein, J. M. (1997). Expression of blood-brain barrier characteristics following neuronal loss and astroglial damage after administration of anti-Thy-1 immunotoxin. Exp. Neurol., 146(1), 33-45. [Crossref]

Document Type

Publication order reference

Identifiers

YADDA identifier

bwmeta1.element.-psjd-doi-10_2478_nuka-2014-0021
JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.