Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 59 | 3 | 83-89

Article title

Bonding xenon and krypton on the surface of uranium dioxide single crystal


Title variants

Languages of publication



We present density functional theory (DFT) calculation results of krypton and xenon atoms interaction on the surface of uranium dioxide single crystal. A pseudo-potential approach in the generalised gradient approximation (GGA) was applied using the ABINIT program package. To compute the unit cell parameters, the 25 atom super-cell was chosen. It has been revealed that close to the surface of a potential well is formed for xenon and krypton atom due to its interaction with the atoms of oxygen and uranium. Depth and shape of the well is the subject of ab initio calculations in adiabatic approximation. The calculations were performed both for the case of oxygenic and metallic surfaces. It has been shown that the potential well for the oxygenic surface is deeper than for the metallic surface. The thermal stability of immobilising the atoms of krypton and xenon in the potential wells were evaluated. The results are shown in graphs.











Physical description


1 - 8 - 2014
12 - 9 - 2014
17 - 3 - 2014
30 - 5 - 2014


  • National Centre for Nuclear Research, 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland
  • National Centre for Nuclear Research, 7 Andrzeja Sołtana Str., 05-400 Otwock/Świerk, Poland


  • 1. Bellamy, R. G., & Rich, J. B. (1969). Grain boundary gas release and swelling in high burn-up uranium dioxide. J. Nucl. Mater., 33(1), 64-76.[Crossref]
  • 2. Hargreaves, R., & Collins, D. M. (1976). A quantitative model for fi ssion gas release and swelling in irradiated uranium dioxide. J. Br. Nucl. Energy Soc., 15, 311-318.
  • 3. Ito, K., Iwasaki, R., & Yoshihiko, I. (1985). Finite element model of fi ssion gas release from UO2 fuel. J. Nucl. Sci. Technol., 22(2), 129-138.[Crossref]
  • 4. Mac Iwan, J. R., & Stevens, W. H. (1964). Xenon diffusion in UO2. J. Nucl. Mater., 11(1), 77-93.
  • 5. Nakajima, T., & Saito, H. (1987). A comparison between fi ssion gas release data and FEMAXI-IV. Nucl. Eng. Des., 101(3), 267-279.[Crossref]
  • 6. Ray, I. L. F., Thiele, H., & Matzke, H. (1992). Transmission electron microscopy study of fi ssion product behaviour in high burnup UO2. J. Nucl. Mater., 188, 90-95.
  • 7. Rest, J., & Cronenberg, W. A. (1987). Modeling the behavior of Xe, I, Cs, Te, Ba and Sr in solid and liquefi ed fuel during severe accidents. J. Nucl. Mater., 150(2), 203-225.
  • 8. Szuta, M. (1994). The diffusion coeffi cient of fi ssion- -product rare gases in single crystal uranium dioxide during irradiation. J. Nucl. Mater., 210, 178-186.
  • 9. White, R. J., & Tucker, M. O. (1983). A new fi ssion-gas release model. J. Nucl. Mater., 118, 1-38.
  • 10. Zimmermann, H. (1978). Investigations on swelling and fi ssion gas behaviour in uranium dioxide. J. Nucl. Mater., 75, 154-161.
  • 11. Anderson, D. A., Uberuaga, B. P. P., & Nericar, N. (2011). U and Xe transport in UO2±x: Density functional theory calculations. Phys. Rev. B, 84, 054105-17.
  • 12. Burbach, J., & Zimmermann, H. (1985). Spaltgasverhalten in bestrahltem UO2 bei out-of-pile-Gluehungen von 1400 bis 2000`°C. KfK, 3997, 1-39.
  • 13. Une, K., & Kashibe, S. (1990). Fission gas release during post irradiation annealing of BWR fuels. J. Nucl. Sci. Technol., 27, 1002-1016.
  • 14. Dąbrowski, L., & Szuta, M. (2012). Ab initio study of helium atoms immobilization in UO2 crystals. Nukleonika, 57(3), 337-343.
  • 15. Dąbrowski, L., & Szuta, M. (2013). Diffusion of helium in the perfect uranium and thorium dioxide single crystals. Nukleonika, 58(2), 295-300.
  • 16. Li, J., Liang, B. E., & Andrews, L. (2002). Noble gas-actinide compounds: complexation of the CUO molecule by Ar, Kr and Xe atoms in noble gas matrices. Science, 295(22), 2242-2245.
  • 17. Turnbull, J. A. (1980). Review of irradiation induced resolution in oxide fuels. Radiat. Eff., 53(3/4), 243-249.[Crossref]
  • 18. Dąbrowski, L., & Szuta, M. (2013). Bonding xenon on the surface of uranium dioxide single crystal. Nukleonika, 58(4), 453-458.
  • 19. www.abinit.org.
  • 20. Troullier, N., & Martins, J. L. (1991). Effi cient pseudopotentials for plane - wave calculations. Phys. Rev. B, 43(3), 1993-2006.[Crossref]
  • 21. Beauvy, M. (1992). Nonideality of the solid solution in (U,Pu)O2 nuclear fuels. J. Nucl. Mater., 188, 232-238.
  • 22. Razavy, M. (2003). Quantum theory of tunneling. River Edge: World Scientifi c Publishing.
  • 23. Feynmann, R. P., Leighton, R. B., & Sands, M. L. (1974). The Feynmann lectures on physics. (Vol. 3, pp. 125-130). Warsaw: PWN.
  • 24. Grabert, H., & Schober, H. R. (1997). Theory of tunneling and diffusion of light interstitial in metals. In H. Wipf (Ed.) Hydrogen in metals III: Properties and applications (pp. 5-49). Topics in applied physics. Vol. 73. Berlin: Springer.

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.