Full-text resources of PSJD and other databases are now available in the new Library of Science.
Visit https://bibliotekanauki.pl


Preferences help
enabled [disable] Abstract
Number of results


2014 | 59 | 2 | 53-59

Article title

Beta-backscattering Thickness-meter Design and Evaluation with Fuzzy TOPSIS Method


Title variants

Languages of publication



An industrial gauge for measuring thickness of a gold coating layer deposited on a steel base through detection of the backscattered beta particles has been described. 3H, 14C and 63Ni pure beta emitters have been tested as the radioisotopic sources of the system individually in a fixed geometry. Analytical calculations have been performed in each case. Furthermore, simulations based on Monte Carlo stochastic technique (MCNP) have been processed. The obtained results from both methods have been compared to define the sensitivity of the system in each case. Finally for the first time, fuzzy TOPSIS method has been used for choosing the best source in the defined geometry for manufacturing, considering the following three criteria: (a) saturation thickness, (b) precision and (c) sensitivity. Results have shown that 3H source is the best alternative to the introduced measuring system.










Physical description


30 - 10 - 2013
8 - 5 - 2014
8 - 7 - 2014


  • Department of Radiation Application, Shahid Beheshti University G. C, Tehran, Iran, Tel: +98 912 439 2064
  • Department of Radiation Application, Shahid Beheshti University G. C, Tehran, Iran, Tel: +98 912 439 2064
  • Department of Radiation Application, Shahid Beheshti University G. C, Tehran, Iran, Tel: +98 912 439 2064
  • Department of Industrial Engineering, K. N. Toosi University of Technology, Tehran, Iran


  • 1. Berry, R. W., Hall, P. M., & Harris, M. T. (1968). Thin film technology. New York: VanNostrand Reinhold.
  • 2. Hurman, R. W. (1975). U.S. Patent No. 3,988,582A. Nucleonic Data Systems, Inc.
  • 3. International Atomic Energy Agency. (2005). Technical data on nucleonic gauges. Vienna: IAEA. (IAEA–TECDOC-1459).
  • 4. BAL SEAL Engineering (2003). Metal plating processes and methods of measuring surface hardness and thickness coatings. Amsterdam: Bal Seal Engineering. (TR-105).
  • 5. Pocock, B. W. (1956). Application of beta-ray backscat-ter thickness gauge to traffic paint wear studies. In 2nd Pacific Area National Meeting of American Society for Testing Materials.
  • 6. Dakota Ultrasonics. (2008). Mmx-6 dl multi-mode ultrasonic thickness-meters. Operational Manual.
  • 7. Jaselskis, E. J., & Cackler, E. T. (2006). Using laser for real-time pavement thickness measurement. National Concrete Pavement Technology Center. (IHRB Project TR-538).
  • 8. Kiang, G. C., & Lee, L. (1969). Study of the coating thickness measurement by the method of filtering backscat-tered beta particles. Chinese J. Phys., 7(1), 2-8.
  • 9. Wang, Y. J., & Lee, S. H. (2007). Generalizing TOPSIS for fuzzy multiple-criteria group decision-making. Comput. Math. Appl., 53, 1762-1772.[WoS]
  • 10. 10. Hwang, C. L., & Yoon, K. L. (1981). Multiple attribute decision making. Methods and application. New York: Springer.
  • 11. Katz, L., & Penfold, A. S. (1952). Range-energy relations for electrons and the determination of beta-ray end-point energies by absorption. Rev. Mod. Phys., 24, 28-44.[Crossref]
  • 12. Lapp, K. E., & Andrews, H. L. (1948). Nuclear radiation physics. New York: Prentice-Hall Inc.
  • 13. Sharma, K. K., & Singh, M. (1980). Z-dependence of thick target β-ray backscattering. J. Appl. Phys., 51, 2239-2243.[Crossref]
  • 14. Cember, H., & Johnson, T. E. (2009). Introduction to health physics (4th ed.). New York: McGraw-Hill Medical.
  • 15. Mahajan, C. S. (2012). Mass attenuation coefficients of beta particles in elements. Science Research Reporter, 2(2), 135-141.
  • 16. Thummel, H. W. (1974). Durschgang von elektronen und betastrahlung durch materieschichten. Berlin: Akademie–Verlag.
  • 17. Sharma, K. K., & Singh, M. (1979). Variation of beta-ray backscattering with target thickness. J. Appl. Phys., 50, 1529-1534.[Crossref]
  • 18. Everhart, T. E. (1960). Simple theory concerning the reflection of electrons from solids. J. Appl. Phys., 31, 1483-1490.[Crossref]
  • 19. Archard, G. D. (1961). Back scattering of electrons. J. Appl. Phys., 32, 1505-1510.[Crossref]
  • 20. Briesmeister, J. F. (2000). MCNP - A general Monte Carlo N-particle transport code. (Version 4C). Los Alamos, NM: Los Alamos National Laboratory. (LA-13709-M).
  • 21. Frujinoiu, C., & Brey, R. R. (2001). A Monte Carlo investigation on electron backscattering. Radiat. Prot. Dosim., 97, 223-229.
  • 22. Saremi, M., Mousavi, S. F., & Sanayei, A. (2009). TQM consultant in SMEs with TOPSIS under fuzzy environment. (Vol. 36, pp. 2742-2749).[WoS]
  • 23. Zadeh, L. A. (1965). Fuzzy sets. Inform. Control, 8, 333-353.
  • 24. Zimmermann, H. J. (1991). Fuzzy sets theory and its application. Dordrecht: Kluwer Academic Press.
  • 25. Deng, H., Yeh, C. H., & Willis R. J. (2000). Inter-company comparison using modified TOPSIS with objective weights. Comput. Oper. Res., 27, 963-973.[Crossref]

Document Type

Publication order reference


YADDA identifier

JavaScript is turned off in your web browser. Turn it on to take full advantage of this site, then refresh the page.